(a) Use the differential equation to show that any solution is increasing if m < P < M and decreasing if 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
(a) Use the differential equation to show that any solution is increasing if m < P < M and
decreasing if 0 < P < m.
(b) For the case where k = 1, M = 100, 000 and m =
it to sketch several solutions for various initial populations. What are the equilibrium
10, 000, draw a direction field and use
solutions?
Transcribed Image Text:(a) Use the differential equation to show that any solution is increasing if m < P < M and decreasing if 0 < P < m. (b) For the case where k = 1, M = 100, 000 and m = it to sketch several solutions for various initial populations. What are the equilibrium 10, 000, draw a direction field and use solutions?
A population of fish is living in an environment with limited resources. This environment can
only support the population if it contains no more than M fish (otherwise some fish would
starve due to an inadequate supply of food, etc.). There is considerable evidence to support
the theory that, for some fish species, there is a minimum population m such that the species
will become extinct if the size of the population falls below m. Such a population can be
modelled using a modified logistic equation:
dP
=(1-)(-)
m
dt
M
Transcribed Image Text:A population of fish is living in an environment with limited resources. This environment can only support the population if it contains no more than M fish (otherwise some fish would starve due to an inadequate supply of food, etc.). There is considerable evidence to support the theory that, for some fish species, there is a minimum population m such that the species will become extinct if the size of the population falls below m. Such a population can be modelled using a modified logistic equation: dP =(1-)(-) m dt M
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,