a) Use properties of logarithms to simplify the function f(x) = In(e5*) + elnx – 2x – 3 In 1+4 ln e. State the domain of f(x). b) Graph the function f(x).
a) Use properties of logarithms to simplify the function f(x) = In(e5*) + elnx – 2x – 3 In 1+4 ln e. State the domain of f(x). b) Graph the function f(x).
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![### Problem
a) Use properties of logarithms to simplify the function
\[ f(x) = \ln (e^{5x}) + e^{\ln x} - 2x - 3 \ln 1 + 4 \ln e. \]
State the domain of \( f(x) \).
b) Graph the function \( f(x) \).
### Simplification and Domain
#### Simplification:
1. \( \ln (e^{5x}) = 5x \) because \( \ln (e^y) = y \).
2. \( e^{\ln x} = x \) because \( e^{\ln y} = y \).
3. \( \ln 1 = 0 \) because any number to the power of 0 is 1.
4. \( \ln e = 1 \) because the natural log of \( e \) is 1.
Now, substituting these into \( f(x) \):
\[ f(x) = 5x + x - 2x - 3(0) + 4(1) \]
\[ f(x) = 5x + x - 2x + 4 \]
\[ f(x) = 4x + 4 \]
#### Domain:
The domain of \( f(x) = 4x + 4 \) is all real numbers, since there are no restrictions from logarithms when simplified.
### Graph Explanation
There is a blank graph with labeled axes likely designed for students to sketch the linear function \( f(x) \).
To graph \( f(x) = 4x + 4 \):
- The y-intercept (where \( x = 0 \)) is \( 4 \).
- The slope is \( 4 \), meaning the graph rises 4 units for every 1 unit it runs to the right.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4f6e2229-f08e-467f-a4fe-3e692a6a0806%2Ff2d82ac6-fa12-48a4-9c6f-a4c33c0b9ac6%2Frsgvwea_processed.png&w=3840&q=75)
Transcribed Image Text:### Problem
a) Use properties of logarithms to simplify the function
\[ f(x) = \ln (e^{5x}) + e^{\ln x} - 2x - 3 \ln 1 + 4 \ln e. \]
State the domain of \( f(x) \).
b) Graph the function \( f(x) \).
### Simplification and Domain
#### Simplification:
1. \( \ln (e^{5x}) = 5x \) because \( \ln (e^y) = y \).
2. \( e^{\ln x} = x \) because \( e^{\ln y} = y \).
3. \( \ln 1 = 0 \) because any number to the power of 0 is 1.
4. \( \ln e = 1 \) because the natural log of \( e \) is 1.
Now, substituting these into \( f(x) \):
\[ f(x) = 5x + x - 2x - 3(0) + 4(1) \]
\[ f(x) = 5x + x - 2x + 4 \]
\[ f(x) = 4x + 4 \]
#### Domain:
The domain of \( f(x) = 4x + 4 \) is all real numbers, since there are no restrictions from logarithms when simplified.
### Graph Explanation
There is a blank graph with labeled axes likely designed for students to sketch the linear function \( f(x) \).
To graph \( f(x) = 4x + 4 \):
- The y-intercept (where \( x = 0 \)) is \( 4 \).
- The slope is \( 4 \), meaning the graph rises 4 units for every 1 unit it runs to the right.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning