(a) Use Eqn. (2.41) or (2.40) to find the eigenvectors and eigenvalues of a spin measurement aligned at a 45 degree from both the x- and z- axes (in the x-z plane; no y component). (b) Suppose you carry out this measurement on a spin-up state (|+)). What out- comes might you find, and which which probabilities for each? (c) Suppose the actual outcome is the least likely possibility, in one particular instance. After this measurement, you measure Sz. Now what might you find, and which which probabilities for each?
(a) Use Eqn. (2.41) or (2.40) to find the eigenvectors and eigenvalues of a spin measurement aligned at a 45 degree from both the x- and z- axes (in the x-z plane; no y component). (b) Suppose you carry out this measurement on a spin-up state (|+)). What out- comes might you find, and which which probabilities for each? (c) Suppose the actual outcome is the least likely possibility, in one particular instance. After this measurement, you measure Sz. Now what might you find, and which which probabilities for each?
Related questions
Question
100%

Transcribed Image Text:(a) Use Eqn. (2.41) or (2.40) to find the eigenvectors and eigenvalues of a spin
measurement aligned at a 45 degree from both the x- and z- axes (in the x-Z
plane; no y component).
(b) Suppose you carry out this measurement on a spin-up state (|+)). What out-
comes might you find, and which which probabilities for each?
(c) Suppose the actual outcome is the least likely possibility, in one particular
instance. After this measurement, you measure S2. Now what might you find,
and which which probabilities for each?

Transcribed Image Text:The spin component along this direction is obtained by projecting the spin vector S onto this new unit
vector
S, = S•în
(2.40)
S, sin 0 cos o + S, sin 0 sin + S¸ cos 0.
%3D
The matrix representations we found for S,, S,, and S, lead to the matrix representation of the spin
component operator S„ (Problem 2.6):
sin e e-iø
h ( cos0
S.
2 \sin0 e' -cos0
(2.41)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
