A uniform wheel of mass 10.0 kg and radius 0.400 m is mounted rigidly on an axle through its center (see the figure). The radius of the axle is 0.200 m, and the rotational inertia of the wheel-axle combination about its central axis is 0.600 kg·m2. The wheel is initially at rest at the top of a surface that is inclined at angle θ = 67.2o with the horizontal; the axle rests on the surface while the wheel extends into a groove in the surface without touching the surface. Once released, the axle rolls down along the surface smoothly and without slipping. When the wheel-axle combination has moved down the surface by 9.29 m, what are (a) its rotational kinetic energy and (b) its translational kinetic energy?
A uniform wheel of mass 10.0 kg and radius 0.400 m is mounted rigidly on an axle through its center (see the figure). The radius of the axle is 0.200 m, and the rotational inertia of the wheel-axle combination about its central axis is 0.600 kg·m2. The wheel is initially at rest at the top of a surface that is inclined at angle θ = 67.2o with the horizontal; the axle rests on the surface while the wheel extends into a groove in the surface without touching the surface. Once released, the axle rolls down along the surface smoothly and without slipping. When the wheel-axle combination has moved down the surface by 9.29 m, what are (a) its rotational kinetic energy and (b) its translational kinetic energy?


Trending now
This is a popular solution!
Step by step
Solved in 3 steps









