A uniform infinitely rigid beam of mass m and length 5/ is receiving a time-varying force P(t), at its end (point D), as shown in the figure. The beam is supported by a pin at point B, two springs of stiffness k, one at point A and one at point C, and a linear viscous damper with constant c at point A. Prepare a discrete analysis model of a degree of freedom, present the free body and kinetic diagrams. Clearly indicate the degree of freedom and its direction on the diagrams. Use as the mass moment of inertia, Io, of the beam with respect to its centerDetermine the equation of motion (for vibrations) with respect to the static equilibrium position
A uniform infinitely rigid beam of mass m and length 5/ is receiving a time-varying force P(t), at its end (point D), as shown in the figure. The beam is supported by a pin at point B, two springs of stiffness k, one at point A and one at point C, and a linear viscous damper with constant c at point A. Prepare a discrete analysis model of a degree of freedom, present the free body and kinetic diagrams. Clearly indicate the degree of freedom and its direction on the diagrams. Use as the mass moment of inertia, Io, of the beam with respect to its centerDetermine the equation of motion (for vibrations) with respect to the static equilibrium position
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
A uniform infinitely rigid beam of mass m and length 5/ is receiving a time-varying force P(t), at its end (point D), as shown in the figure. The beam is supported by a pin at point B, two springs of stiffness k, one at point A and one at point C, and a linear viscous damper with constant c at point A. Prepare a discrete analysis model of a degree of freedom, present the free body and kinetic diagrams. Clearly indicate the degree of freedom and its direction on the diagrams. Use as the mass moment of inertia, Io, of the beam with respect to its centerDetermine the equation of motion (for vibrations) with respect to the static equilibrium position
Expert Solution
Step 1: Given
The moment of inertia of of beam about its center is .
Step by step
Solved in 3 steps with 7 images
Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY