A UCLA researcher claims that the life span of mice can be extended by as much as 25% when the calories in their diet are reduced by approximately 40% from the time they are weaned. The restricted diet is enriched to normal levels by vitamins and protein. Assuming that it is known from previous studies that σ = 5.6 months, how many mice should be included in the sample if we wish to be 99% confident that the mean life span of the sample will be within 2 months of the population mean for all mice subjected to this reduced diet? Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. The required sample size is ☐ . (Round up to the nearest whole number as needed.) Areas under the Normal Curve Area Areas under the Normal Curve .03 .04 -1.2 -1.1 0.3015 2 .00 .01 .02 -3.4 0.0003 0.0003 0.0003 0.0003 0.0003 -3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 -3.3 -3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 -3.2 0.0006 -3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 -3.1 0.0007 -3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 -3.0 -2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 -2.9 -2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0019 0.0021 -2.8 0.0020 0.0035 0.0033 0.0031 0.0030 0.0029 -2.7 0.0027 0.0034 0.0032 0.0028 0.0026 -2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 -2.6 -2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 -2.5 -2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 -2.4 -2.3 0.0107 0.0104 0.0099 0.0102 0.0091 0.0096 0.0094 0.0087 0.0089 0.0084 -2.3 -2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 -2.2 -2.1 0.0179 0.0166 0.0162 0.0158 0.0154 0.0150 0.0143 -2.1 0.0174 0.0170 0.0146 -2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 -2.0 -1.9 0.0287 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 0.0281 -1.9 0.0274 0.0359 -1.8 0.0344 0.0351 0.0336 0.0329 0.0307 0.0322 0.0301 0.0314 0.0294 -1.8 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 -1.7 0.0392 0.0384 0.0375 0.0367 -1.7 -1.6 0.0548 0.0516 0.0537 0.0465 0.0526 0.0455 -1.6 0.0505 0.0495 0.0485 0.0475 -1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 -1.5 0.0808 0.0793 0.0764 -1.4 0.0721 0.0708 0.0778 0.0681 0.0749 -1.4 0.0735 0.0694 -1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 -1.3 0.1131 0.1151 0.1112 0.1093 0.1056 0.1075 0.1038 0.1003 0.0985 -1.2 0.1020 0.1335 0.1314 0.1357 0.1251 0.1292 0.1271 0.1230 0.1210 0.1190 -1.1 0.1170 0.1539 0.1423 -1.0 0.1587 0.1562 0.1515 0.1492 0.1469 0.1446 0.1379 0.1401 -1.0 -0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 -0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.2389 -0.7 0.2420 0.2266 0.2358 0.2236 0.2327 0.2296 0.2206 0.2177 -0.6 0.2743 0.2709 0.2643 0.2578 0.2546 0.2514 0.2483 0.2676 0.2611 -0.5 0.3085 0.3050 0.2946 0.2912 0.2981 0.2810 0.2877 0.2843 -0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 -0.3 0.3783 0.3745 0.3707 0.3632 0.3821 0.3669 0.3594 0.3557 0.3520 -0.2 0.4207 0.4090 0.4168 0.4129 0.4052 0.4013 0.3974 0.3936 0.3897 0.4602 0.4522 0.4483 0.4443 -0.1 0.4364 0.4562 0.4325 0.4404 0.4286 0.4960 0.4801 -0.0 0.4721 0.5000 0.4920 0.4880 0.4840 0.4761 0.4681 .00 .01 .02 .03 .04 .05 .06 .07 .08 .05 .06 .07 .08 .09 Z .00 0.0003 0.0003 0.0003 0.0003 0.0002 -3.4 0.0 0.1 0.0004 0.0006 0.2 0.3 0.4 .01 .02 .03 .04 .05 .06 .07 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.0 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.1 0.6103 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6141 0.2 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6480 0.6406 0.6443 0.3 0.6517 0,6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.4 .08 .09 名 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 -2.7 0.7 0.7257 0.7580 0.8 0.7881 0.9 0.8159 1.0 0.8413 0.9726 0.7291 0.7324 0.7357 0.7611 0.7673 0.7642 0.7910 0.7939 0.7967 0.8186 0.8212 0.8238 0.8438 0.8461 0.8485 0.8508 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.9066 0.9099 1.3 0.9131 0.9032 0.9049 0.9082 0.9115 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 1.5 0.9345 0.9357 0.9370 0.9332 0.9382 0.9394 0.9406 0.9463 0.9505 1.6 0.9515 0.9452 0.9474 0.9484 0.9495 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 1.8 0.9656 0.9664 0.9641 0.9649 0.9671 0.9678 1.9 0.9713 0.9719 0.9732 0.9738 0.9744 0.5 0.7389 0.7422 0.7454 0.7486 0.7549 0.7517 0.6 0.7794 0.7823 0.7852 0.7704 0.7 0.7734 0.7764 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.8 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 0.9 0.8531 0.8554 0.8577 0.8599 0.8621 1.0 0.8790 1.1 0.8810 0.8830 0.8980 0.8997 0.9015 1.2 0.9177 0.9147 0.9162 1.3 0.9292 0.9306 0.9319 1.4 0.9686 0.9750 2.0 2.1 2.2 0.9861 0.9864 0.9772 0.9783 0.9778 0.9821 0.9826 0.9830 0.9868 2.3 0.1611 -0.9 0.9893 0,9896 2.4 0.9918 0.9920 2.5 0.9938 0.9940 0.9898 0.9922 0.1894 0.1867 -0.8 0.2148 -0.7 0.2451 -0.6 0.2776 -0.5 0.3121 0.3483 0.3859 0.4247 0.4641 -0.0 .09 -0.4 -0.3 -0.2 -0.1 2 ▲ B' \' C']' σ' 2.6 0.9957 0.9927 0.9929 0.9943 0.9945 0.9946 0.9959 0.9960 0.9931 0.9429 0.9418 0.9441 1.5 0.9525 0.9535 0.9545 1.6 0.9616 0.9625 0.9633 1.7 0.9699 0.9693 0.9706 1.8 1.9 0.9756 0.9761 0.9767 0.9788 2.0 0.9798 0.9803 0.9793 0.9817 0.9808 0.9812 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.1 0.9884 0.9887 0.9871 0.9875 0.9878 0.9881 0.9890 2.2 0.9913 0.9901 0.9904 0.9906 0.9909 0.9911 0.9925 0.9932 0.9934 0.9916 2.3 0.9936 2.4 ¡Ai --‹ ›0 = 0 2.7 2.8 2.9 3.4 2 .00 0.9941 0.9956 0.9953 0.9955 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9974 0.9976 0.9975 0.9977 0.9977 0.9979 0.9978 0.9981 0.9982 0.9982 0.9983 0.9984 0.9985 0.9986 2.9 0.9984 0.9985 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.0 3.1 0.9990 0.9993 0.9991 0.9991 0.9992 0.9992 0.9991 0.9993 3.1 0.9992 0.9992 3.2 0.9993 3.2 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9995 0.9995 3.3 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 .01 .02 .03 .04 0.9948 0.9949 0.9951 0.9952 2.5 0.9961 0.9962 0.9963 0.9964 2.6 0.9972 0.9973 0.9974 2.7 0.9979 0.9980 0.9981 2.8 0.9986 0.9997 3.3 3.4 .05 .06 .07 .08 .09
A UCLA researcher claims that the life span of mice can be extended by as much as 25% when the calories in their diet are reduced by approximately 40% from the time they are weaned. The restricted diet is enriched to normal levels by vitamins and protein. Assuming that it is known from previous studies that σ = 5.6 months, how many mice should be included in the sample if we wish to be 99% confident that the mean life span of the sample will be within 2 months of the population mean for all mice subjected to this reduced diet? Click here to view page 1 of the standard normal distribution table. Click here to view page 2 of the standard normal distribution table. The required sample size is ☐ . (Round up to the nearest whole number as needed.) Areas under the Normal Curve Area Areas under the Normal Curve .03 .04 -1.2 -1.1 0.3015 2 .00 .01 .02 -3.4 0.0003 0.0003 0.0003 0.0003 0.0003 -3.3 0.0005 0.0005 0.0005 0.0004 0.0004 0.0004 0.0004 0.0004 0.0003 -3.3 -3.2 0.0007 0.0007 0.0006 0.0006 0.0006 0.0005 0.0005 0.0005 -3.2 0.0006 -3.1 0.0010 0.0009 0.0009 0.0009 0.0008 0.0008 0.0008 0.0008 0.0007 -3.1 0.0007 -3.0 0.0013 0.0013 0.0013 0.0012 0.0012 0.0011 0.0011 0.0011 0.0010 0.0010 -3.0 -2.9 0.0019 0.0018 0.0018 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014 -2.9 -2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0019 0.0021 -2.8 0.0020 0.0035 0.0033 0.0031 0.0030 0.0029 -2.7 0.0027 0.0034 0.0032 0.0028 0.0026 -2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036 -2.6 -2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048 -2.5 -2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064 -2.4 -2.3 0.0107 0.0104 0.0099 0.0102 0.0091 0.0096 0.0094 0.0087 0.0089 0.0084 -2.3 -2.2 0.0139 0.0136 0.0132 0.0129 0.0125 0.0122 0.0119 0.0116 0.0113 0.0110 -2.2 -2.1 0.0179 0.0166 0.0162 0.0158 0.0154 0.0150 0.0143 -2.1 0.0174 0.0170 0.0146 -2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183 -2.0 -1.9 0.0287 0.0268 0.0262 0.0256 0.0250 0.0244 0.0239 0.0233 0.0281 -1.9 0.0274 0.0359 -1.8 0.0344 0.0351 0.0336 0.0329 0.0307 0.0322 0.0301 0.0314 0.0294 -1.8 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 -1.7 0.0392 0.0384 0.0375 0.0367 -1.7 -1.6 0.0548 0.0516 0.0537 0.0465 0.0526 0.0455 -1.6 0.0505 0.0495 0.0485 0.0475 -1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0571 0.0559 -1.5 0.0808 0.0793 0.0764 -1.4 0.0721 0.0708 0.0778 0.0681 0.0749 -1.4 0.0735 0.0694 -1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 -1.3 0.1131 0.1151 0.1112 0.1093 0.1056 0.1075 0.1038 0.1003 0.0985 -1.2 0.1020 0.1335 0.1314 0.1357 0.1251 0.1292 0.1271 0.1230 0.1210 0.1190 -1.1 0.1170 0.1539 0.1423 -1.0 0.1587 0.1562 0.1515 0.1492 0.1469 0.1446 0.1379 0.1401 -1.0 -0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 -0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.2389 -0.7 0.2420 0.2266 0.2358 0.2236 0.2327 0.2296 0.2206 0.2177 -0.6 0.2743 0.2709 0.2643 0.2578 0.2546 0.2514 0.2483 0.2676 0.2611 -0.5 0.3085 0.3050 0.2946 0.2912 0.2981 0.2810 0.2877 0.2843 -0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 -0.3 0.3783 0.3745 0.3707 0.3632 0.3821 0.3669 0.3594 0.3557 0.3520 -0.2 0.4207 0.4090 0.4168 0.4129 0.4052 0.4013 0.3974 0.3936 0.3897 0.4602 0.4522 0.4483 0.4443 -0.1 0.4364 0.4562 0.4325 0.4404 0.4286 0.4960 0.4801 -0.0 0.4721 0.5000 0.4920 0.4880 0.4840 0.4761 0.4681 .00 .01 .02 .03 .04 .05 .06 .07 .08 .05 .06 .07 .08 .09 Z .00 0.0003 0.0003 0.0003 0.0003 0.0002 -3.4 0.0 0.1 0.0004 0.0006 0.2 0.3 0.4 .01 .02 .03 .04 .05 .06 .07 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359 0.0 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.1 0.6103 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6141 0.2 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6480 0.6406 0.6443 0.3 0.6517 0,6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879 0.4 .08 .09 名 0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224 0.6 -2.7 0.7 0.7257 0.7580 0.8 0.7881 0.9 0.8159 1.0 0.8413 0.9726 0.7291 0.7324 0.7357 0.7611 0.7673 0.7642 0.7910 0.7939 0.7967 0.8186 0.8212 0.8238 0.8438 0.8461 0.8485 0.8508 1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.9066 0.9099 1.3 0.9131 0.9032 0.9049 0.9082 0.9115 1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 1.5 0.9345 0.9357 0.9370 0.9332 0.9382 0.9394 0.9406 0.9463 0.9505 1.6 0.9515 0.9452 0.9474 0.9484 0.9495 1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 1.8 0.9656 0.9664 0.9641 0.9649 0.9671 0.9678 1.9 0.9713 0.9719 0.9732 0.9738 0.9744 0.5 0.7389 0.7422 0.7454 0.7486 0.7549 0.7517 0.6 0.7794 0.7823 0.7852 0.7704 0.7 0.7734 0.7764 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.8 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389 0.9 0.8531 0.8554 0.8577 0.8599 0.8621 1.0 0.8790 1.1 0.8810 0.8830 0.8980 0.8997 0.9015 1.2 0.9177 0.9147 0.9162 1.3 0.9292 0.9306 0.9319 1.4 0.9686 0.9750 2.0 2.1 2.2 0.9861 0.9864 0.9772 0.9783 0.9778 0.9821 0.9826 0.9830 0.9868 2.3 0.1611 -0.9 0.9893 0,9896 2.4 0.9918 0.9920 2.5 0.9938 0.9940 0.9898 0.9922 0.1894 0.1867 -0.8 0.2148 -0.7 0.2451 -0.6 0.2776 -0.5 0.3121 0.3483 0.3859 0.4247 0.4641 -0.0 .09 -0.4 -0.3 -0.2 -0.1 2 ▲ B' \' C']' σ' 2.6 0.9957 0.9927 0.9929 0.9943 0.9945 0.9946 0.9959 0.9960 0.9931 0.9429 0.9418 0.9441 1.5 0.9525 0.9535 0.9545 1.6 0.9616 0.9625 0.9633 1.7 0.9699 0.9693 0.9706 1.8 1.9 0.9756 0.9761 0.9767 0.9788 2.0 0.9798 0.9803 0.9793 0.9817 0.9808 0.9812 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857 2.1 0.9884 0.9887 0.9871 0.9875 0.9878 0.9881 0.9890 2.2 0.9913 0.9901 0.9904 0.9906 0.9909 0.9911 0.9925 0.9932 0.9934 0.9916 2.3 0.9936 2.4 ¡Ai --‹ ›0 = 0 2.7 2.8 2.9 3.4 2 .00 0.9941 0.9956 0.9953 0.9955 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9974 0.9976 0.9975 0.9977 0.9977 0.9979 0.9978 0.9981 0.9982 0.9982 0.9983 0.9984 0.9985 0.9986 2.9 0.9984 0.9985 3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990 3.0 3.1 0.9990 0.9993 0.9991 0.9991 0.9992 0.9992 0.9991 0.9993 3.1 0.9992 0.9992 3.2 0.9993 3.2 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 0.9995 0.9995 3.3 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 0.9996 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 .01 .02 .03 .04 0.9948 0.9949 0.9951 0.9952 2.5 0.9961 0.9962 0.9963 0.9964 2.6 0.9972 0.9973 0.9974 2.7 0.9979 0.9980 0.9981 2.8 0.9986 0.9997 3.3 3.4 .05 .06 .07 .08 .09
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
Please solve the attached
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Recommended textbooks for you
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON