A truck has a drag coefficient based on frontal area of CD = 0:86. The truck has a mass of 12,750 kg and a frontal area of 10.5 m2. If the truck is traveling at constant speed on a level road, the forces retarding its forward progress are the drag and the rolling friction. The force due to rolling friction can be written as Frf = W*fr(1 + V/V0) where V is the truck speed in m/s, V0 = 30 m/s and fr (the coe¢ cient of rolling resistance) is approximately 0.008 for a truck on concrete or asphalt. Plot the total power the engine must supply as a function of truck speed, V . Comment on the relative importance of drag and rolling friction in the fuel consumption of the truck.
A truck has a drag coefficient based on frontal area of CD = 0:86. The truck has a mass of 12,750 kg and a frontal area of 10.5 m2. If the truck is traveling at constant speed on a level road, the forces retarding its forward progress are the drag and the rolling friction. The force due to rolling friction can be written as
Frf = W*fr(1 + V/V0)
where V is the truck speed in m/s, V0 = 30 m/s and fr (the coe¢ cient of rolling resistance) is approximately 0.008 for a truck on concrete or asphalt. Plot the total power the engine must supply as a function of truck speed, V . Comment on the relative importance of drag and rolling friction in the fuel consumption of the truck.
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 7 images