A triangle has two of its corners in (4, 0, 7), (0, 4, 7), and the third on the curve in space that consists of all points (4, 4, a? + 7), where a is a real number. Calculate the area of the triangle as a function of a, f (a), and indicate where it assumes its minimum value (Positively Oriented ON System). Answer: The area f 0. = and it assumes its minimum (a) when a

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

correct answer please 

A triangle has two of its corners in (4, 0, 7),
(0, 4, 7), and the third on the curve in space that consists
of all points (4, 4, a? + 7), where a is a real number.
Calculate the area of the triangle as a function of a,
f (a), and indicate where it assumes its minimum value
(Positively Oriented ON System).
Answer: The area f
0. = and it assumes its minimum
%3D
(a) when a
Transcribed Image Text:A triangle has two of its corners in (4, 0, 7), (0, 4, 7), and the third on the curve in space that consists of all points (4, 4, a? + 7), where a is a real number. Calculate the area of the triangle as a function of a, f (a), and indicate where it assumes its minimum value (Positively Oriented ON System). Answer: The area f 0. = and it assumes its minimum %3D (a) when a
En triangel har två av sina hörn i (4, 0, 7),
(0, 4, 7), och det tredje på den kurva i rummet som
består av alla punkter (4, 4, a² +7), där a är ett reellt
tal. Beräkna arean av triangeln som en funktion av a,
f(a), och ange var den antar sitt minimala värde
(Positivt orienterat ON-system).
Svar: Arean f(a) =
och det antar sitt minimum
då a =
Transcribed Image Text:En triangel har två av sina hörn i (4, 0, 7), (0, 4, 7), och det tredje på den kurva i rummet som består av alla punkter (4, 4, a² +7), där a är ett reellt tal. Beräkna arean av triangeln som en funktion av a, f(a), och ange var den antar sitt minimala värde (Positivt orienterat ON-system). Svar: Arean f(a) = och det antar sitt minimum då a =
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,