A train started from rest and moved with constant acceleration. At one time it was traveling 30 m/s, and 160 m farther on it was traveling 50 m/s. Calculate (a) the acceleration, (b) the time required to travel the 160 m mentioned, (c) the time required to attain the speed of 30 m/s, and (d) the distance moved from rest to the time the train had a speed of 30 m/s. (e) Graph x versus t and v versus t for the train, from rest.
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
A train started from rest and moved with constant acceleration.
At one time it was traveling 30 m/s, and 160 m farther on it
was traveling 50 m/s. Calculate (a) the acceleration, (b) the time required
to travel the 160 m mentioned, (c) the time required to attain
the speed of 30 m/s, and (d) the distance moved from rest to
the time the train had a speed of 30 m/s. (e) Graph x versus t and v
versus t for the train, from rest.
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images