A toy car of mass m is pushed along a frictionless track so that it is moving at a speed v1. It hits a spring with stiffness k at the end of the track causing the spring to compress. What is the maximum compression x of the spring? By conservation of energy, K1 + U1 = K2 + U2 Some of the terms in the equation above are zero; thus it can be simplified to: ½m 2 = ½ Isolating the compression x, x = ( 2, 1/2 Suppose the mass of the toy car moving at 2.5 m/s is 0.0505 kg and the spring constant is k = 605 N/m, the spring will experience a maximum compression of 0.0 84 m.

icon
Related questions
Question

without rounding off 

A toy car of mass m is pushed along a frictionless track so that it is moving at a speed v1. It hits a spring with stiffness k at the end of the
track causing the spring to compress. What is the maximum compression x of the spring?
By conservation of energy,
K1 + U1 = K2 + U2
Some of the terms in the equation above are zero; thus it can be simplified to:
2 = 2
½m
Isolating the compression x,
x = (
2,
1/2
Suppose the mass of the toy car moving at 2.5 m/s is 0.0505 kg and the spring constant is k = 605 N/m, the spring will experience a maximum
compression of 0.0
84 m.
Transcribed Image Text:A toy car of mass m is pushed along a frictionless track so that it is moving at a speed v1. It hits a spring with stiffness k at the end of the track causing the spring to compress. What is the maximum compression x of the spring? By conservation of energy, K1 + U1 = K2 + U2 Some of the terms in the equation above are zero; thus it can be simplified to: 2 = 2 ½m Isolating the compression x, x = ( 2, 1/2 Suppose the mass of the toy car moving at 2.5 m/s is 0.0505 kg and the spring constant is k = 605 N/m, the spring will experience a maximum compression of 0.0 84 m.
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer