A three-phase, 765-kV, 60-Hz transposed line is composed of four ACSR 1,431,000, 45/7 Bobolink conductors per phase with flat horizontal spacing of 14 m. The conductors have a diameter of 3.625 cm and a GMR of 1.439 cm. The bundle spacing is 45 cm. The line is 400 Km long, and for the purpose of this problem, a lossless line is assumed. (a) Determine the transmission line surge impedance Ze, phase constant ß, wave length 2, the surge impedance loading SIL, and the ABCD constant. (b) The line delivers 2000 MVA at 0.8 lagging power factor at 735 kV. Determine the sending end quantities and voltage regulation. (c) Determine the receiving end quantities when 1920 MW and 600 Mvar are being transmitted at 765 kV at the sending end. (d) The line is terminated in a purely resistive load. Determine the sending end quantities and voltage regulation when the receiving end load resistance is 264.5 at 735 kV.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
icon
Concept explainers
Question
4. A three-phase, 765-kV, 60-Hz transposed line is composed of four ACSR 1,431,000, 45/7 Bobolink
conductors per phase with flat horizontal spacing of 14 m. The conductors have a diameter of 3.625
cm and a GMR of 1.439 cm. The bundle spacing is 45 cm. The line is 400 Km long, and for the
purpose of this problem, a lossless line is assumed.
(a) Determine the transmission line surge impedance Ze, phase constant ß, wave length λ, the surge
impedance loading SIL, and the ABCD constant.
(b) The line delivers 2000 MVA 0.8 lagging power factor at 735 kV. Determine the sending end
quantities and voltage regulation.
(c) Determine the receiving end quantities when 1920 MW and 600 Mvar are being transmitted at 765
kV at the sending end.
(d) The line is terminated in a purely resistive load. Determine the sending end quantities and voltage
regulation when the receiving end load resistance is 264.5 2 at 735 kV.
Transcribed Image Text:4. A three-phase, 765-kV, 60-Hz transposed line is composed of four ACSR 1,431,000, 45/7 Bobolink conductors per phase with flat horizontal spacing of 14 m. The conductors have a diameter of 3.625 cm and a GMR of 1.439 cm. The bundle spacing is 45 cm. The line is 400 Km long, and for the purpose of this problem, a lossless line is assumed. (a) Determine the transmission line surge impedance Ze, phase constant ß, wave length λ, the surge impedance loading SIL, and the ABCD constant. (b) The line delivers 2000 MVA 0.8 lagging power factor at 735 kV. Determine the sending end quantities and voltage regulation. (c) Determine the receiving end quantities when 1920 MW and 600 Mvar are being transmitted at 765 kV at the sending end. (d) The line is terminated in a purely resistive load. Determine the sending end quantities and voltage regulation when the receiving end load resistance is 264.5 2 at 735 kV.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps

Blurred answer
Knowledge Booster
Transmission line parameter
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,