A third order linear, homogeneous DE whose general solution is  is: y(t)= c1e^(t) + c2e^(2t) = c3e^(3t) [Hint: The general solution implies that r=1,2 and 3 are the roots of the characteristic equation of the DE. Hence r-1, r-2 and r-3 are the factors of the characteristic equation.]    A. none of these  B. y'''-6y''-11y'-6y=0  C. y'''+6y''-11y'-6y=0  D. y'''+6y''+11y'-6y=0  E.  y'''-6y''+11y'-6y=

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

(a)A third order linear, homogeneous DE whose general solution is  is: y(t)= c1e^(t) + c2e^(2t) = c3e^(3t)

[Hint: The general solution implies that r=1,2 and 3 are the roots of the characteristic equation of the DE. Hence r-1, r-2 and r-3 are the factors of the characteristic equation.]
 

 A. none of these
 B. y'''-6y''-11y'-6y=0
 C. y'''+6y''-11y'-6y=0
 D. y'''+6y''+11y'-6y=0
 E.  y'''-6y''+11y'-6y=                                                                                                                                                                                                                 
 (b) Solving the DE;  dx/dt = (t+x)/t, t>0
 x(t) = Int^(t) +Ct

 with the homogeneous method yields
 where C  is an arbitrary constant.
True or False?
(c)The general solution to the DE in the initial value problem (IVP)
 
y'''+8y'+16y = 0
y(0)= 1
y'(0)=4

.
y(x)=C1xe^(-4x) +Ce^(-4x) 


Imposing the initial conditions, the values of the constants C1  and  C2 are
 

C1=  

C2=

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,