A thin beam of white light is directed at a flat sheet of silicate flint glass at an angle of 20° to the surface of the sheet. Due to dispersion in the glass, the beam is spread out in a spectrum as shown in the figure. The refractive index of silicate flint glass versus wavelength is graphed in figure to the right. (a) The rays (A and B) shown in the figure correspond to the extreme wavelengths. Which corresponds to red and which to violet? Explain your reasoning. (b) For what thickness of the glass sheet will the spectrum be 1.0 mm wide, as shown (see Problem 7)? Hint: you must first solve Problem 7 first before doing Problem 8). Answer: 93.5 mm
A thin beam of white light is directed at a flat sheet of silicate flint glass at an angle of 20° to the surface of the sheet. Due to dispersion in the glass, the beam is spread out in a spectrum as shown in the figure. The refractive index of silicate flint glass versus wavelength is graphed in figure to the right. (a) The rays (A and B) shown in the figure correspond to the extreme wavelengths. Which corresponds to red and which to violet? Explain your reasoning. (b) For what thickness of the glass sheet will the spectrum be 1.0 mm wide, as shown (see Problem 7)? Hint: you must first solve Problem 7 first before doing Problem 8). Answer: 93.5 mm
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
A thin beam of white light is directed at a flat sheet of silicate flint glass at an angle of 20° to the surface of the sheet. Due to dispersion in the glass, the beam is spread out in a spectrum as shown in the figure. The refractive index of silicate flint glass versus wavelength is graphed in figure to the right. (a) The rays (A and B) shown in the figure correspond to the extreme wavelengths. Which corresponds to red and which to violet? Explain your reasoning. (b) For what thickness of the glass sheet will the spectrum be 1.0 mm wide, as shown (see Problem 7)? Hint: you must first solve Problem 7 first before doing Problem 8). Answer: 93.5 mm

Transcribed Image Text:Index of refraction (n)
1.7
20.09
Silicate flint glass
Silicate flint
glass
1.6
Borate flint glass
Vacuum
Vacuum
Quartz
Silicate crown glass
1.5
d
Fused quartz
Fluorite
A
1.0 mm
1.4
400
500
600
700
Wavelength in vacuum (nm)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON