A thin bar of length L = 3 meters is situated along the x axis so that one end is at x - 0 and the other end is at x = 3. The thermal diffusivity of the bar is k = 0.4. The bar's initial temperature is given by the function f(x) = 100 - 5x degrees Celsius. The ends of the bar (x = 0 and x = 3) are then put in an icy bath and kept at a constant 0 degrees C. Let u(x, t) be the temperature in the bar at x at time t, with t measured in seconds. Find u(x, t) and then u4(2, 0.1).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
icon
Concept explainers
Question
A thin bar of length L = 3 meters is situated along the x axis so that one end is at x = 0 and the other end is at x = 3. The
thermal diffusivity of the bar is k = 0.4. The bar's initial temperature is given by the function f(x) = 100 - 5x degrees Celsius.
The ends of the bar (x = 0 and x = 3) are then put in an icy bath and kept at a constant 0 degrees C. Let u(x, t) be the
temperature in the bar at x at time t, with t measured in seconds. Find u(x, t) and then u4(2, 0.1).
Transcribed Image Text:A thin bar of length L = 3 meters is situated along the x axis so that one end is at x = 0 and the other end is at x = 3. The thermal diffusivity of the bar is k = 0.4. The bar's initial temperature is given by the function f(x) = 100 - 5x degrees Celsius. The ends of the bar (x = 0 and x = 3) are then put in an icy bath and kept at a constant 0 degrees C. Let u(x, t) be the temperature in the bar at x at time t, with t measured in seconds. Find u(x, t) and then u4(2, 0.1).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Application of Differentiation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,