A thin bar of length L = 3 meters is situated along the x axis so that one end is at x = 0 and the other end is at x = 3. The thermal diffusivity of the bar is k = 0.4. The bar's initial temperature f(x) = 100 degrees Celsius. The ends of the bar (x = 0 and x = 3) are then put in an icy bath and kept at a constant 0 degrees C. Let u(x, t) be the temperature in the bar at x at time t, with t measured in seconds. Find u(x, t) and then u4 (2, 0.1). Put us(2. 0.1) calculated accurately to the nearest thousandth (3 decimal places) in the answer box.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

[ordinary differential equations topic]

Please solve the following problem

Provide a well-explained and understandable

step by step solution 

Thank you 

f)

 

A thin bar of length L = 3 meters is situated along the x axis so that one end is at x = 0 and the other end is at x =
3. The thermal diffusivity of the bar is k = 0.4. The bar's initial temperature f(x) = 100 degrees Celsius. The ends of
the bar (x = 0 and x = 3) are then put in an icy bath and kept at a constant 0 degrees C. Let u(x, t) be the
temperature in the bar at x at time t, with t measured in seconds. Find u(x, t) and then u4 (2, 0.1).
Put us (2. 0.1) calculated accurately to the nearest thousandth (3 decimal places) in the answer box.
Transcribed Image Text:A thin bar of length L = 3 meters is situated along the x axis so that one end is at x = 0 and the other end is at x = 3. The thermal diffusivity of the bar is k = 0.4. The bar's initial temperature f(x) = 100 degrees Celsius. The ends of the bar (x = 0 and x = 3) are then put in an icy bath and kept at a constant 0 degrees C. Let u(x, t) be the temperature in the bar at x at time t, with t measured in seconds. Find u(x, t) and then u4 (2, 0.1). Put us (2. 0.1) calculated accurately to the nearest thousandth (3 decimal places) in the answer box.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,