A television camera is positioned 4000 ft from the base of a rocket launching pad. The angle of elevation of the camera has to change at the correct rate in order to keep the rocket in sight. Also, the mechanism for focusing the camera has to take into account the increasing distance from the camera to the rising rocket. Let's assume the rocket rises vertically and its speed is 500 ft/s when it has risen 3000 ft. (Round your answers to three decimal places.) (a) How fast is the distance from the television camera to the rocket changing at that moment? (b) If the television camera is always kept aimed at the rocket, how fast is the camera's angle of elevation changing at that same moment?
Ratios
A ratio is a comparison between two numbers of the same kind. It represents how many times one number contains another. It also represents how small or large one number is compared to the other.
Trigonometric Ratios
Trigonometric ratios give values of trigonometric functions. It always deals with triangles that have one angle measuring 90 degrees. These triangles are right-angled. We take the ratio of sides of these triangles.
A television camera is positioned 4000 ft from the base of a rocket launching pad. The angle of elevation of the camera has to change at the correct rate in order to keep the rocket in sight. Also, the mechanism for focusing the camera has to take into account the increasing distance from the camera to the rising rocket. Let's assume the rocket rises vertically and its speed is 500 ft/s when it has risen 3000 ft. (Round your answers to three decimal places.)
(b) If the television camera is always kept aimed at the rocket, how fast is the camera's angle of elevation changing at that same moment?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images