A television camera is positioned 4000 ft from the base of a rocket launching pad. The angle of elevation of the camera has to change at the correct rate in order to keep the rocket in sight. Also, the mechanism for focusing the camera has to take into account the increasing distance from the camera to the rising rocket. Let's assume the rocket rises vertically and its speed is 1000 ft/s when it has risen 3000 ft. (Round your answers to three decimal places.) (a) How fast is the distance from the television camera to the rocket changing at that moment? 600 ft/s (b) If the television camera is always kept aimed at the rocket, how fast is the camera's angle of elevation changing at that same moment? rad/s Enter a number.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
A television camera is positioned 4000 ft from the base of a rocket launching pad. The angle of elevation of the camera has
to change at the correct rate in order to keep the rocket in sight. Also, the mechanism for focusing the camera has to take
into account the increasing distance from the camera to the rising rocket. Let's assume the rocket rises vertically and its
speed is 1000 ft/s when it has risen 3000 ft. (Round your answers to three decimal places.)
(a) How fast is the distance from the television camera to the rocket changing at that moment?
600
ft/s
(b) If the television camera is always kept aimed at the rocket, how fast is the camera's angle of elevation changing
at that same moment?
rad/s
Enter a number.
Transcribed Image Text:A television camera is positioned 4000 ft from the base of a rocket launching pad. The angle of elevation of the camera has to change at the correct rate in order to keep the rocket in sight. Also, the mechanism for focusing the camera has to take into account the increasing distance from the camera to the rising rocket. Let's assume the rocket rises vertically and its speed is 1000 ft/s when it has risen 3000 ft. (Round your answers to three decimal places.) (a) How fast is the distance from the television camera to the rocket changing at that moment? 600 ft/s (b) If the television camera is always kept aimed at the rocket, how fast is the camera's angle of elevation changing at that same moment? rad/s Enter a number.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning