A table of values of a function f(x) is shown. Use the table to find Left-hand and Right-hand Riemann Sums with 5 subintervals of equal width. 10 15 20 25 f(x) -42 -37 -25 -6 15 36 Left-hand Sum Right-hand Sum =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Based on the table, can you help me find left & right Riemann Sums?

A table of values of a function \( f(x) \) is shown. Use the table to find Left-hand and Right-hand Riemann Sums with 5 subintervals of equal width.

\[
\begin{array}{c|ccccc}
x & 0 & 5 & 10 & 15 & 20 & 25 \\
\hline
f(x) & -42 & -37 & -25 & -6 & 15 & 36 \\
\end{array}
\]

**Left-hand Sum =** [Input Box]

**Right-hand Sum =** [Input Box]

**Explanation:**

To calculate the Left-hand Riemann Sum, use the formula based on the left endpoints of each interval. Similarly, the Right-hand Riemann Sum uses the right endpoints. Divide the interval [0, 25] into 5 equal subintervals. Each subinterval has a width of \( \Delta x = 5 \).

- **Left-hand Sum:** Use values \( f(0), f(5), f(10), f(15), f(20) \).
- **Right-hand Sum:** Use values \( f(5), f(10), f(15), f(20), f(25) \).
Transcribed Image Text:A table of values of a function \( f(x) \) is shown. Use the table to find Left-hand and Right-hand Riemann Sums with 5 subintervals of equal width. \[ \begin{array}{c|ccccc} x & 0 & 5 & 10 & 15 & 20 & 25 \\ \hline f(x) & -42 & -37 & -25 & -6 & 15 & 36 \\ \end{array} \] **Left-hand Sum =** [Input Box] **Right-hand Sum =** [Input Box] **Explanation:** To calculate the Left-hand Riemann Sum, use the formula based on the left endpoints of each interval. Similarly, the Right-hand Riemann Sum uses the right endpoints. Divide the interval [0, 25] into 5 equal subintervals. Each subinterval has a width of \( \Delta x = 5 \). - **Left-hand Sum:** Use values \( f(0), f(5), f(10), f(15), f(20) \). - **Right-hand Sum:** Use values \( f(5), f(10), f(15), f(20), f(25) \).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps

Blurred answer
Knowledge Booster
Area
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,