A system consists of two identical pumps, #1 and #2. If one pump fails, the system will still operate. However, because of the added strain, the remaining pump is now more likely to fail than was originally the case. That is, r 5 P(#2 fails | #1 fails). P(#2 fails) = q. If at least one pump fails by the end of the pump design life in 7% of all systems and both pumps fail during that period in only 1%, what is the probability that pump #1 will fail during the pump design life?
Continuous Probability Distributions
Probability distributions are of two types, which are continuous probability distributions and discrete probability distributions. A continuous probability distribution contains an infinite number of values. For example, if time is infinite: you could count from 0 to a trillion seconds, billion seconds, so on indefinitely. A discrete probability distribution consists of only a countable set of possible values.
Normal Distribution
Suppose we had to design a bathroom weighing scale, how would we decide what should be the range of the weighing machine? Would we take the highest recorded human weight in history and use that as the upper limit for our weighing scale? This may not be a great idea as the sensitivity of the scale would get reduced if the range is too large. At the same time, if we keep the upper limit too low, it may not be usable for a large percentage of the population!
A system consists of two identical pumps, #1 and #2. If one pump fails, the system will still operate. However, because of the added strain, the remaining pump is now more likely to fail than was originally the case. That is, r 5 P(#2 fails | #1 fails). P(#2 fails) = q. If at least one pump fails by the end of the pump design life in 7% of all systems and both pumps fail during that period in only 1%, what is the
Trending now
This is a popular solution!
Step by step
Solved in 2 steps