a) Supppose H is a 2 dimensional subspace of R³ with a basis {b₁,b2}, and y is a vector given by b₁ = -1,b2 - ()--) y = 2 Find projy and z such that y = projµy + z. Hint: Find the basis of H, then use inner product to find the coefficients. b)Find the least squares solution of the following equation and then find the least-squares error, (0-0) -1 = 2
a) Supppose H is a 2 dimensional subspace of R³ with a basis {b₁,b2}, and y is a vector given by b₁ = -1,b2 - ()--) y = 2 Find projy and z such that y = projµy + z. Hint: Find the basis of H, then use inner product to find the coefficients. b)Find the least squares solution of the following equation and then find the least-squares error, (0-0) -1 = 2
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![## Vector Projection and Least Squares Solution in Linear Algebra
### Question 2
#### Part a)
Suppose \( H \) is a 2-dimensional subspace of \( \mathbb{R}^3 \) with a basis \( \{ \mathbf{b_1}, \mathbf{b_2} \} \), and \( \mathbf{y} \) is a vector given by
\[
\mathbf{b_1} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad \mathbf{b_2} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}
\]
Find \( \text{proj}_H \mathbf{y} \) and \( \mathbf{z} \) such that \( \mathbf{y} = \text{proj}_H \mathbf{y} + \mathbf{z} \).
**Hint:** Find the basis of \( H \), then use the inner product to find the coefficients.
#### Part b)
Find the least squares solution of the following equation and then find the least-squares error,
\[
\begin{pmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}
\]
**Hint:** For the equation \( A\mathbf{y} = \mathbf{b} \), the least-square solution can be found by solving \( A^T A \hat{\mathbf{y}} = A^T \mathbf{b} \). The error is the norm of \( \mathbf{b} - A \hat{\mathbf{y}} \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F238584dd-2c47-447e-aaba-b9fce1ec1b5c%2F8f3331c8-421c-48cd-990b-a9aa426a8c4b%2Flq263g_processed.png&w=3840&q=75)
Transcribed Image Text:## Vector Projection and Least Squares Solution in Linear Algebra
### Question 2
#### Part a)
Suppose \( H \) is a 2-dimensional subspace of \( \mathbb{R}^3 \) with a basis \( \{ \mathbf{b_1}, \mathbf{b_2} \} \), and \( \mathbf{y} \) is a vector given by
\[
\mathbf{b_1} = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, \quad \mathbf{b_2} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{y} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}
\]
Find \( \text{proj}_H \mathbf{y} \) and \( \mathbf{z} \) such that \( \mathbf{y} = \text{proj}_H \mathbf{y} + \mathbf{z} \).
**Hint:** Find the basis of \( H \), then use the inner product to find the coefficients.
#### Part b)
Find the least squares solution of the following equation and then find the least-squares error,
\[
\begin{pmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}
\]
**Hint:** For the equation \( A\mathbf{y} = \mathbf{b} \), the least-square solution can be found by solving \( A^T A \hat{\mathbf{y}} = A^T \mathbf{b} \). The error is the norm of \( \mathbf{b} - A \hat{\mathbf{y}} \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)