a) Suppose that X and Y are two independent continuous random variables with the following probability functions f(x) = 2x for 0sx<1 fO) = 3y? for 0sys1 i. Find the probability P(X +Y < 0.5) ii. Find the covariance (X, Y). iii. Find the conditional probability P(x s 0.2/Y s 0.25) b) The two dimensional random variables (P.Q) has a joint density function f(p. g) =1+P+q+ cpq-p+g) c+3 p 2 0,q 20 where c > 0 is a ce constant. i. Find the probability P(P < 1) ii. There exists exactly only one value of c in order that P and Q are independent. What is such a value?

A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
icon
Related questions
Question
a) Suppose that X and Y are two independent continuous random variables with the
following probability functions
f(x) = 2x for 0sxs1
fV) = 3y² for 0sys1
i. Find the probability P(X +Y < 0.5)
ii. Find the covariance (X,Y).
iii. Find the conditional probability P(x < 0.2/Y < 0.25)
b) The two dimensional random variables (P.Q) has a joint density function
1+p+q+cpq e-(p+4),
f(p, q) =
p 2 0,9 20
c+3
where c> 0 is a co
i. Find the probability P(P < 1)
ii. There exists exactly only one value of c in order that P and Q are independent.
What is such a value?
constant.
Transcribed Image Text:a) Suppose that X and Y are two independent continuous random variables with the following probability functions f(x) = 2x for 0sxs1 fV) = 3y² for 0sys1 i. Find the probability P(X +Y < 0.5) ii. Find the covariance (X,Y). iii. Find the conditional probability P(x < 0.2/Y < 0.25) b) The two dimensional random variables (P.Q) has a joint density function 1+p+q+cpq e-(p+4), f(p, q) = p 2 0,9 20 c+3 where c> 0 is a co i. Find the probability P(P < 1) ii. There exists exactly only one value of c in order that P and Q are independent. What is such a value? constant.
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Knowledge Booster
Multivariate Distributions and Functions of Random Variables
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
A First Course in Probability (10th Edition)
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability
A First Course in Probability
Probability
ISBN:
9780321794772
Author:
Sheldon Ross
Publisher:
PEARSON