(a) Suppose that h is any (0,2)-tensor. Show that h(s), defined by 1 h(s)(³) = ½ (h(ÂÂ) + h(‚Ã)), is a symmetric tensor. (b) Show that h(A), defined by h(4) (ÂÂ) = ½ (h(ÂÃ) — h(ÂÃ)), is an antisymmetric tensor.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Please solve all parts of this question 

(a) Suppose that \( \mathbf{h} \) is any \( (0,2) \)-tensor. Show that \( \mathbf{h}_{(S)} \), defined by

\[
\mathbf{h}_{(S)}(\vec{A},\vec{B}) = \frac{1}{2} \left( \mathbf{h}(\vec{A},\vec{B}) + \mathbf{h}(\vec{B},\vec{A}) \right),
\]

is a symmetric tensor.

(b) Show that \( \mathbf{h}_{(A)} \), defined by

\[
\mathbf{h}_{(A)}(\vec{A},\vec{B}) = \frac{1}{2} \left( \mathbf{h}(\vec{A},\vec{B}) - \mathbf{h}(\vec{B},\vec{A}) \right),
\]

is an antisymmetric tensor.

(c) The tensors defined in the previous two parts are called the symmetric and antisymmetric parts of \( \mathbf{h} \), respectively. Find the components of the symmetric and antisymmetric parts of \( \vec{p} \otimes \vec{q} \), a \( (0,2) \)-tensor with components

\[
(\vec{p} \otimes \vec{q})_{\alpha \beta} = p_\alpha q_\beta.
\]

(d) Show that if \( \mathbf{h} \) is an antisymmetric \( (0,2) \)-tensor, then

\[
\mathbf{h}(\vec{A},\vec{A}) = 0
\]

for any vector \( \vec{A} \).

(e) For a general \( (0,2) \)-tensor \( \mathbf{h} \), find the number of independent components that \( \mathbf{h}_{(S)} \) and \( \mathbf{h}_{(A)} \) have.
Transcribed Image Text:(a) Suppose that \( \mathbf{h} \) is any \( (0,2) \)-tensor. Show that \( \mathbf{h}_{(S)} \), defined by \[ \mathbf{h}_{(S)}(\vec{A},\vec{B}) = \frac{1}{2} \left( \mathbf{h}(\vec{A},\vec{B}) + \mathbf{h}(\vec{B},\vec{A}) \right), \] is a symmetric tensor. (b) Show that \( \mathbf{h}_{(A)} \), defined by \[ \mathbf{h}_{(A)}(\vec{A},\vec{B}) = \frac{1}{2} \left( \mathbf{h}(\vec{A},\vec{B}) - \mathbf{h}(\vec{B},\vec{A}) \right), \] is an antisymmetric tensor. (c) The tensors defined in the previous two parts are called the symmetric and antisymmetric parts of \( \mathbf{h} \), respectively. Find the components of the symmetric and antisymmetric parts of \( \vec{p} \otimes \vec{q} \), a \( (0,2) \)-tensor with components \[ (\vec{p} \otimes \vec{q})_{\alpha \beta} = p_\alpha q_\beta. \] (d) Show that if \( \mathbf{h} \) is an antisymmetric \( (0,2) \)-tensor, then \[ \mathbf{h}(\vec{A},\vec{A}) = 0 \] for any vector \( \vec{A} \). (e) For a general \( (0,2) \)-tensor \( \mathbf{h} \), find the number of independent components that \( \mathbf{h}_{(S)} \) and \( \mathbf{h}_{(A)} \) have.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 7 steps with 82 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,