A student releases a 3.1kg cart from the top of ramp and starts a stopwatch. The length from the front of the cart to the end of the ramp and the distance from the end of the ramp to the stopper are shown. Neglect backwards friction and drag and assume the cart does not lose speed transitioning from the ramp to the floor. What is the cart's acceleration on the ramp? 1.2 m/s? (magnitude) What is the cart's acceleration on the floor? 140cm m/s? |(magnitude) 270cm How long does the cart take to reach the end of the ramp? (timed from the release) How fast is the cart traveling as it hits the stopper? m/s How long does the cart take to reach the stopper?
A student releases a 3.1kg cart from the top of ramp and starts a stopwatch. The length from the front of the cart to the end of the ramp and the distance from the end of the ramp to the stopper are shown. Neglect backwards friction and drag and assume the cart does not lose speed transitioning from the ramp to the floor. What is the cart's acceleration on the ramp? 1.2 m/s? (magnitude) What is the cart's acceleration on the floor? 140cm m/s? |(magnitude) 270cm How long does the cart take to reach the end of the ramp? (timed from the release) How fast is the cart traveling as it hits the stopper? m/s How long does the cart take to reach the stopper?
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
Refer to the picture below.

Transcribed Image Text:A student releases a 3.1kg cart from the top of ramp and starts a stopwatch. The
length from the front of the cart to the end of the ramp and the distance from the
end of the ramp to the stopper are shown. Neglect backwards friction and drag
and assume the cart does not lose speed transitioning from the ramp to the floor.
What is the cart's acceleration on the ramp?
1.2
m/s?
(magnitude)
What is the cart's acceleration on the floor?
140cm
m/s?
270cm
(magnitude)
7°
How long does the cart take to reach the end of the ramp?
S
(timed from the release)
How fast is the cart traveling as it hits the stopper?
m/s
How long does the cart take to reach the stopper?
(timed from the release)
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning

University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley

College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON