A structure that can be idealized as a SDOF system has a mass 100 kg, a stiffness of 40 kN/m and a damping ratio of 0.10. If it is subjected to a harmonic dynamic force given by p(t) = 500 sin(15 t) N, determine (a) the dynamic amplification under steady-state conditions; (b) the maximum velocity of the steady state vibration; and (c) the maximum amplitude if the forcing frequency was equal to the system frequency (a resonant condition).
A structure that can be idealized as a SDOF system has a mass 100 kg, a stiffness of 40 kN/m and a damping ratio of 0.10. If it is subjected to a harmonic dynamic force given by p(t) = 500 sin(15 t) N, determine (a) the dynamic amplification under steady-state conditions; (b) the maximum velocity of the steady state vibration; and (c) the maximum amplitude if the forcing frequency was equal to the system frequency (a resonant condition).
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question

Transcribed Image Text:A structure that can be idealized as a SDOF system has a mass 100 kg, a stiffness of 40 kN/m
and a damping ratio of 0.10. If it is subjected to a harmonic dynamic force given by p(t) = 500
sin(15 t) N, determine (a) the dynamic amplification under steady-state conditions; (b) the
maximum velocity of the steady state vibration; and (c) the maximum amplitude if the forcing
frequency was equal to the system frequency (a resonant condition).
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps with 4 images

Recommended textbooks for you

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY