A steel rod, 12 mm in diameter, passes centrally through a copper tube 2.5 m long and having 36 mm and 48 mm as internal and external diameters respectively. The tube is closed at each end by 24 mm thick steel plates which are secured by nuts. The nuts are tightened until the copper tube is reduced in length by 0.50. The whole assembly is then raised in temperature by 60 degrees Celsius. Steel: Coefficient of expansion = 1.2x10^-5/degrees Celsius, Es = 200 GPa Copper: Coefficient of expansion = 1.75x10^-5/degrees Celsius, Ec = 100 GPa Calculate the stress in copper and stress in steel after the rise of temperature if the thickness of the plates remains unchanged. Indicate if the answer is tensile, tension, compression.
A steel rod, 12 mm in diameter, passes centrally through a copper tube 2.5 m long and having 36 mm and 48 mm as internal and external diameters respectively. The tube is closed at each end by 24 mm thick steel plates which are secured by nuts. The nuts are tightened until the copper tube is reduced in length by 0.50. The whole assembly is then raised in temperature by 60 degrees Celsius. Steel: Coefficient of expansion = 1.2x10^-5/degrees Celsius, Es = 200 GPa Copper: Coefficient of expansion = 1.75x10^-5/degrees Celsius, Ec = 100 GPa Calculate the stress in copper and stress in steel after the rise of temperature if the thickness of the plates remains unchanged. Indicate if the answer is tensile, tension, compression.
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
A steel rod, 12 mm in diameter, passes centrally through a copper tube 2.5 m long and having 36 mm and 48 mm as internal and external diameters respectively. The tube is closed at each end by 24 mm thick steel plates which are secured by nuts. The nuts are tightened until the copper tube is reduced in length by 0.50. The whole assembly is then raised in temperature by 60 degrees Celsius. Steel: Coefficient of expansion = 1.2x10^-5/degrees Celsius, Es = 200 GPa Copper: Coefficient of expansion = 1.75x10^-5/degrees Celsius, Ec = 100 GPa
Calculate the stress in copper and stress in steel after the rise of temperature if the thickness of the plates remains unchanged. Indicate if the answer is tensile, tension, compression.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY