A steady-flow adiabatic turbine (expander) accepts gas at conditions T1, P1, and discharges at conditions T2, P2. Assuming ideal gases, determine (per mole of gas) W, Wideal, Wlost, and SG. Take Tσ = 300 K. Take T1 = 500 K, P1 = 6 bar, T2 = 371 K, P2 = 1.2 bar, CP/R = 7/2.
Q: an ideal monatomic gas cools from 550 k to 400 k at contant volume as 900 J of energy is removed…
A:
Q: Two perfectly rigid containers each hold the same amount of n moles of ideal gas. The first…
A:
Q: Consider n = 1.17 mols of an ideal gas on the pV diagram below where p1 = p2 = 3.15 x 10^5 Pa…
A: Given: n=1.17 p1=p2=3.15×105 pa p3=9.89×105 pa V1=5.64×10-3 m3 V2=3.58×10-3 m3 V3=1.14×10-3 m3
Q: he pressure P and volume V of an expanding gas are related by the formula PV^b=c, where b and c are…
A: Given, Relation between pressure and volume of the expanding gas, PVb = c b = 1.5P= 7 kPaV = 110…
Q: After an isobaric process, the enthalpy of 28g of CO gas, increases by 2700 J. The initial…
A:
Q: 1.50 moles of a monatomic ideal gas goes isothermally from state 1 to state 2. P1 = 2.4×105 Pa, V1 =…
A: The number of mole is 1.5 moles. The process is isothermal. The initial pressure and initial volume…
Q: 8.7 moles of an ideal monatomic gas expand adiabatically, performing 8800 J of work in the process.…
A: .
Q: 2 mol of an ideal monoatomic gas moves from State 1 to State 2 P at constant pressure 1000 Pa and…
A: To find work done in isobaric process.(since pressure remains constant) W = ∫PdV = P∆V Since P =…
Q: A monatomic ideal gas (γ = 5/3) is contained within a perfectly insulated cylinder that is fitted…
A:
Q: You lower the temperature of a 2.5 mol sample of Ar gas by 2.3°C at constant volume. For monatomic…
A:
Q: The P-V diagram relates to a fixed quantity of O2, assumed to be an ideal gas. The temperature at…
A: the internal energy is the difference between the heat and work done .the expression for the…
Q: What is ∆S for a mole of perfect gas that is first compressed to half the original volume and then…
A:
Q: P2 657°C Isothermal 2.0 37°C atm V(L) V3 The figure (not to scale) shows a pV diagram for 5.1 g of…
A:
Q: 1.50 moles of a monatomic ideal gas goes isothermally from state 1 to state 2. P1 = 3.5×105 Pa, V1 =…
A: Given data: Number of moles = 1.50 mole Ideal gas, isothermal process P1 = 3.5 × 105 Pa V1 = 71…
Q: In the figure, 1.41 mole of an ideal diatomic gas can go from a to c along either the direct…
A: Internal energy: The entire amount of kinetic and potential energy that molecules and their ultimate…
Q: 1.00×10^(−3) moles of ideal monotonic gas expands from a volume of 2.00 cm^3 to 4.00 cm^3 at a…
A:
Q: In the figure, 2.47 mole of an ideal diatomic gas can go from a to c along either the direct…
A:
Q: p(atm) 1+ tv(L) 1 What is the work done by the gas when it undergoes the isobaric (constant…
A: Given data: Constant pressure (P) = 2 atm Initial volume (Vi) = 1 L Final volume (Vf) = 5 L…
Q: Problem 10: In an adiabatic process oxygen gas in a container is compressed along a path that can…
A: Given: An adiabatic process we havep=poV-65 andL65 To find: a) work done expression b)Amount of…
Q: Problem 2. A gas expands from a state where pi final pressure of 40 lbf/in?. The relationship…
A: In thermodynamics, when a system works on the environment it is taken as positive, while if the…
Q: Consider a cylinder with a movable piston containing nn moles of a Van der Waals gas. The entire…
A:
Q: c ideal gas undergoes an isothermal expansion at 300K, as the volume increased from 4x10−2−2m33 to…
A: We are given T=300KV1=4×10−2 m3V2=0.16 m3P2=150 kPaR=8.314 J/(mole K)
Q: 1.00 mole of an ideal monatomic gas is in a rigid container with a constant volume of 2.00 L. The…
A:
Q: An ideal gas has been subjected transformations AB and BC (see pic/link) Find the change in the…
A:
Q: A hollow container is filled with an ideal gas. The container is designed to maintain a constant…
A: In this question we are given that a hollow container is filled with an ideal gas. The container is…
Q: V V2 ATWWW味N
A:
A steady-flow adiabatic turbine (expander) accepts gas at conditions T1, P1, and discharges at conditions T2, P2. Assuming ideal gases, determine (per mole of gas) W, Wideal, Wlost, and SG. Take Tσ = 300 K. Take T1 = 500 K, P1 = 6 bar, T2 = 371 K, P2 = 1.2 bar, CP/R = 7/2.
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
- You need to design a gas with a y (= Cp/Cv) value of 1.5. While no individual gas has this value, you could produce such a gas by mixing together a monatomic gas and a diatomic gas. What fraction or percentage of the molecules in the mixture needs to be monatomic? [Hint: for a monatomic gas Cv = (3/2)R and for a diamotic gas Cy (5/2) R.] =The temperature at state A is 20.0ºC, that is 293 K. During the last test, you have found the temperature at state D is 73.0 K and n = 164 moles for this monatomic ideal gas. What is the change in thermal energy for process D to B, in MJ (MegaJoules)?Q.44 A gas is enclosed in a cylinder of volume Vo fitted with piston of cross-sectional area A and mass m. Atmospheric pressure is Po. Adiabatic exponent of gas is y. The piston is slightly depressed and released. (A) Time period of oscillation of piston if the process is isothermal is 2π (B) Time period of oscillation of piston if the process is adiabatic is 2π (C) Time period of oscillation of piston if the process is isothermal is 2π (D) Time period of oscillation of piston if the process is adiabatic is 2π mVo VA²Po ymVo A²Po mVo AP mVo √ YA²Po Po
- A container with an initial volume of o.0655 m holds 2.3 moles of a monoatomic ideal gas at a temperature of 314 K. The gas is now compressed adiabatically to a volume of o.0307 m³. What is the final pressure?An ideal gas consists of 2.50 mol of diatomic molecules that rotate but do not oscillate. The molecular diameter is 118 pm. The gas is expanded at a constant pressure of 1.79 x 105 Pa, with a transfer of 150 J as heat. What is the change in the mean free path of the molecules?A 1 mol sample of a diatomic ideal gas (γ=1.4) expands slowly and adiabatically from a pressure of 18 atm and a volume of 3 L to a final volume of 18 L. What is the final temprature (in K) of the gas? ( Answer no decimal )
- An ideal gas, initially at a pressure of 10.3 atm and a temperature of 312 K, is allowed to expand adiabatically until its volume doubles. What is the gas’s final temperature, in kelvin, if the gas is monatomic? What is the gas’s final pressure, in atmospheres, if the gas is diatomic?A container having a volume of 2.30 L holds 1.80 g of helium gas at a temperature of 29.0 °C. (a) Find the pressure in the container. P = atm (b) Helium behaves as an ideal monoatomic gas. Find the internal energy of the system. Eint =A student decides to conduct an experiment by using two different flasks and two different gas samples. In flask 1, there exists Neon (Ne) gas, whereas the second flask is filled with nitrogen (N2) gas. If both flasks are kept at 270 K, answer the following questions. (Note: Molar mass of N2 = 28.014 g mol1,molar mass of Neon = 20.1797 g mol, R= 8.31 J. mol1.K1, k=1.38 x 1023 J.K-1, Avogadro's number = 6.02 x 1023 mol1.) a) Find the average kinetic energy of one Neon molecule. b) Calculate the average kinetic energy (translational+rotational) of one nitrogen molecule by including rotational motion in your calculations. c) Find the root-mean-square speed of one neon molecule. V ms1 Check
- First Question: A. Using the definition of specific heat, the first law of thermodynamics and the ideal gas law, show that: (i) dQ = Cy dT +P dV, where Cy is the specific heat at constant volume, (ii) Cp = Cv + R, where Cp is the specific heat at constant pressure and R is the ideal gas constant. B. mol sample of hydrogen gas is heated at constant pressure from 300K to. 420K. Calculate (a) the energy transferred to the gas by heat, (b) the increase in its internal energy, and (c) the work done on the gas. %3D %3DYou would like to raise the temperature of an ideal gas from 295 K to 960 K in an adiabatic process. a)What compression ratio will do the job for a monatomic gas? b)What compression ratio will do the job for a diatomic gas?