A spring with spring constant k = 620 N/m is placed in a vertical orientation with its lower end supported by a horizontal surface. The upper end is depressed 25 cm, and a block with a weight of 50 N is placed (unattached) on the depressed spring.The system is then released from rest. Assume that the gravitational potential energy Ug of the block is zero at the release point (y = 0) and calculate the kinetic energy K of the block for y equal to (a) 0, (b) 0.050 m, (c) 0.10 m, (d) 0.15 m, and (e) 0.20 m. Also, (f) how far above its point of release does the block rise?
Simple harmonic motion
Simple harmonic motion is a type of periodic motion in which an object undergoes oscillatory motion. The restoring force exerted by the object exhibiting SHM is proportional to the displacement from the equilibrium position. The force is directed towards the mean position. We see many examples of SHM around us, common ones are the motion of a pendulum, spring and vibration of strings in musical instruments, and so on.
Simple Pendulum
A simple pendulum comprises a heavy mass (called bob) attached to one end of the weightless and flexible string.
Oscillation
In Physics, oscillation means a repetitive motion that happens in a variation with respect to time. There is usually a central value, where the object would be at rest. Additionally, there are two or more positions between which the repetitive motion takes place. In mathematics, oscillations can also be described as vibrations. The most common examples of oscillation that is seen in daily lives include the alternating current (AC) or the motion of a moving pendulum.
A spring with spring constant k = 620 N/m is placed in a vertical
orientation with its lower end supported by a horizontal surface.
The upper end is depressed 25 cm, and a block with a weight
of 50 N is placed (unattached) on the depressed spring.The system
is then released from rest. Assume that the gravitational potential
energy Ug of the block is zero at the release point (y = 0) and calculate
the kinetic energy K of the block for y equal to (a) 0,
(b) 0.050 m, (c) 0.10 m, (d) 0.15 m, and (e) 0.20 m. Also, (f) how far
above its point of release does the block rise?
Trending now
This is a popular solution!
Step by step
Solved in 6 steps with 6 images