A spherical source of light with a diameter Dsource = 3.55 cm radiates light equally in all directions, with power P = 4.10 W. (a) Find the light intensity (in kW/m2) at the surface of the light source. |kW/m2 (b) Find the light intensity (in mW/m2) r = 7.10 m away from the center of the light source. mW/m2 (c) At this 7.10 m distance, a lens is set up with its axis pointing toward the light source. The lens has a circular face with a diameter of Dens = 16.0 cm and has a focal length of f = 34.0 cm. Find the diameter (in cm) of the light source's image. cm (d) Find the light intensity (in W/m2) at the image. W/m2
A spherical source of light with a diameter Dsource = 3.55 cm radiates light equally in all directions, with power P = 4.10 W. (a) Find the light intensity (in kW/m2) at the surface of the light source. |kW/m2 (b) Find the light intensity (in mW/m2) r = 7.10 m away from the center of the light source. mW/m2 (c) At this 7.10 m distance, a lens is set up with its axis pointing toward the light source. The lens has a circular face with a diameter of Dens = 16.0 cm and has a focal length of f = 34.0 cm. Find the diameter (in cm) of the light source's image. cm (d) Find the light intensity (in W/m2) at the image. W/m2
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps