A spherical balloon is being inflated at a constant rate of 20 cubic inches per second. How fast is the radius of the balloon changing at the instant the balloon's diameter is 12 inches? Is the radius changing more rapidly when d = 12 or when d = 16? Why? Draw several spheres with different radii, and observe that as volume changes, the radius, diameter, and surface area of the balloon also change. Recall that the volume of a sphere of radius r is V = ar³. Note that in the setting of this problem, both V and r are changing as time t changes, and thus both V and r may be viewed as implicit functions of t, with respective derivatives dV and Differentiate both sides of the equation V = ar with respect to t (using the chain rule on the right) to find a formula for depends on both r and dr dr that dV dt At this point in the problem, by differentiating we have "related the rates" of change of V and r. Recall that we are given in the problem that the balloon is being inflated at a constant rate of 20 cubic inches per second. To which derivative does this rate correspond? AP А. dr AP dt dr С. dt OD. None of these From the above discussion, we know the value of dV at every value of t. Next, observe that when the diameter of the balloon is 12, we dt AP 4xr2 dr dt , substitute these values for the relevant quantities and solve for the dt know the value of the radius. In the equation remaining unknown quantity, which is d. How fast is the radius changing at the instant when d = 12? How fast is the radius changing at the instant when d = 16? When is the radius changing more rapidly, when d = 12 or when d = 16? A. when d = 12 B. when d = 16 C. Neither; the rate of change of the radius is constant

Algebra & Trigonometry with Analytic Geometry
13th Edition
ISBN:9781133382119
Author:Swokowski
Publisher:Swokowski
Chapter7: Analytic Trigonometry
Section7.6: The Inverse Trigonometric Functions
Problem 94E
icon
Related questions
Question
A spherical balloon is being inflated at a constant rate of 20 cubic inches per second. How fast is the radius of the balloon changing at the
instant the balloon's diameter is 12 inches? Is the radius changing more rapidly when d = 12 or when d = 16? Why?
Draw several spheres with different radii, and observe that as volume changes, the radius, diameter, and surface area of the balloon also
change. Recall that the volume of a sphere of radius r is V = ar³. Note that in the setting of this problem, both V and r are changing as
time t changes, and thus both V and r may be viewed as implicit functions of t, with respective derivatives
dV and
dr
Differentiate both sides of the equation V = ar³ with respect to t (using the chain rule on the right) to find a formula for
depends on both r and dr
that
dV
dt
At this point in the problem, by differentiating we have "related the rates" of change of V and r. Recall that we are given in the problem
that the balloon is being inflated at a constant rate of 20 cubic inches per second. To which derivative does this rate correspond?
dV
А.
dr
AP
dt
dr
с.
dt
D. None of these
From the above discussion, we know the value of
dV
at every value of t. Next, observe that when the diameter of the balloon is 12, we
dt
4xp2 dr
dt
dV
-, substitute these values for the relevant quantities and solve for the
dt
know the value of the radius. In the equation
remaining unknown quantity, which is d. How fast is the radius changing at the instant when d = 12?
How fast is the radius changing at the instant when d = 16?
When is the radius changing more rapidly, when d = 12 or when d = 16?
A. when d = 12
B. when d = 16
C. Neither; the rate of change of the radius is constant
Transcribed Image Text:A spherical balloon is being inflated at a constant rate of 20 cubic inches per second. How fast is the radius of the balloon changing at the instant the balloon's diameter is 12 inches? Is the radius changing more rapidly when d = 12 or when d = 16? Why? Draw several spheres with different radii, and observe that as volume changes, the radius, diameter, and surface area of the balloon also change. Recall that the volume of a sphere of radius r is V = ar³. Note that in the setting of this problem, both V and r are changing as time t changes, and thus both V and r may be viewed as implicit functions of t, with respective derivatives dV and dr Differentiate both sides of the equation V = ar³ with respect to t (using the chain rule on the right) to find a formula for depends on both r and dr that dV dt At this point in the problem, by differentiating we have "related the rates" of change of V and r. Recall that we are given in the problem that the balloon is being inflated at a constant rate of 20 cubic inches per second. To which derivative does this rate correspond? dV А. dr AP dt dr с. dt D. None of these From the above discussion, we know the value of dV at every value of t. Next, observe that when the diameter of the balloon is 12, we dt 4xp2 dr dt dV -, substitute these values for the relevant quantities and solve for the dt know the value of the radius. In the equation remaining unknown quantity, which is d. How fast is the radius changing at the instant when d = 12? How fast is the radius changing at the instant when d = 16? When is the radius changing more rapidly, when d = 12 or when d = 16? A. when d = 12 B. when d = 16 C. Neither; the rate of change of the radius is constant
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
College Algebra
College Algebra
Algebra
ISBN:
9781337282291
Author:
Ron Larson
Publisher:
Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Elementary Geometry for College Students
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning
Algebra: Structure And Method, Book 1
Algebra: Structure And Method, Book 1
Algebra
ISBN:
9780395977224
Author:
Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:
McDougal Littell