A space probe, initially at rest, undergoes an internal mechanical malfunction and breaks into three pieces. One piece of mass m1 = 48.0 kg travels in the positive x -direction at 12.0 m/s, and a second piece of mass m2 = 62.0 kg travels in the xy -plane at an angle of 105° at 15.0 m/s. The third piece has mass m3 = 112 kg. (a) Sketch a diagram of the situation, labeling the different masses and their velocities. (b) Write the general expression for conservation of momentum in the x and y -directions in terms of m1, m2, m3, v1, v2 and v3 and the sines and cosines of the angles, taking u to be the unknown angle. (c) Calculate the final x -components of the momenta of m1 and m2 . (d) Calculate the final y -components of the momenta of m1 and m2 . (e) Substitute the known momentum components into the general equations of momentum for the xand y -directions, along with the known mass m3, v3 cos0  and v3 sin0 , respectively, and use the identity cos0 + sin20 = 1 to obtain v3 . (g) Divide the equation for v3 sin0 by that for v3 cos0 to obtain tan0 , then obtain the angle by taking the inverse tangent of both sides. (h) In general, would three such pieces necessarily have to move in the same plane? Why?

College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
icon
Related questions
Topic Video
Question

A space probe, initially at rest, undergoes an internal mechanical malfunction and breaks into three pieces. One piece of mass m1 = 48.0 kg travels in the positive x -direction at 12.0 m/s, and a second piece of mass m2 = 62.0 kg travels in the xy -plane at an angle of 105° at 15.0 m/s. The third piece has mass m3 = 112 kg. (a) Sketch a diagram of the situation, labeling the different masses and their velocities. (b) Write the general expression for conservation of momentum in the x and y -directions in terms of m1, m2, m3, v1, v2 and v3 and the sines and cosines of the angles, taking u to be the unknown angle. (c) Calculate the final x -components of the momenta of m1 and m2 . (d) Calculate the final y -components of the momenta of m1 and m2 . (e) Substitute the known momentum components into the general equations of momentum for the xand y -directions, along with the known mass m3, v3 cos0  and v3 sin0 , respectively, and use the identity cos0 + sin20 = 1 to obtain v3 . (g) Divide the equation for v3 sin0 by that for v3 cos0 to obtain tan0 , then obtain the angle by taking the inverse tangent of both sides. (h) In general, would three such pieces necessarily have to move in the same plane? Why?

Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Momentum
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
College Physics
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON