A sodium atom (Z = 11) contains 11 protons in its nucleus. Strictly speaking, the Bohr model does not apply, because the neutral atom contains 11 electrons instead of a single electron. However, we can apply the model to the outermost electron as an approximation, provided that we use an effective value Zeffective rather than 11 for the number of protons in the nucleus. (a) The ionization energy for the outermost electron in a sodium atom is 5.1 eV. Use the Bohr model with Z = Zeffective to calculate a value for Zeffective. (b) Using Z = 11, determine the corresponding value for the radius r of the outermost Bohr orbit. (c) Using the value calculated for Zeffective in part (a), determine the corresponding radius r of the outermost Bohr orbit.
A sodium atom (Z = 11) contains 11 protons in its nucleus. Strictly speaking, the Bohr model does not apply, because the neutral atom contains 11 electrons instead of a single electron. However, we can apply the model to the outermost electron as an approximation, provided that we use an effective value Zeffective rather than 11 for the number of protons in the nucleus. (a) The ionization energy for the outermost electron in a sodium atom is 5.1 eV. Use the Bohr model with Z = Zeffective to calculate a value for Zeffective. (b) Using Z = 11, determine the corresponding value for the radius r of the outermost Bohr orbit. (c) Using the value calculated for Zeffective in part (a), determine the corresponding radius r of the outermost Bohr orbit.
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 3 images