A small block slides down a frictionless track whose shape is described by y = (x^2) /d for x<0 and by y = -(x^2)/d for x>0. The value of d is 2.91 m, and x and y are measured in meters as usual. Suppose the block starts on the track at x = 0. What minimum initial velocity (moving to the right) must the block have such that it will leave the track at x = 0 and go into freefall?
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
9. A small block slides down a frictionless track whose shape is described by y = (x^2) /d for x<0 and by y = -(x^2)/d for x>0. The value of d is 2.91 m, and x and y are measured in meters as usual.
5.35 m/s
|
||
2.27 m/s
|
||
3.78 m/s
|
||
7.56 m/s
|
Step by step
Solved in 3 steps with 3 images