A ski gondola carries skiers to the top of a mountain. Assume that weights of skiers are normally distributed with a mean of 190 lb and a standard deviation of 44 lb. The gondola has a stated capacity of 25 passengers, and the gondola is rated for a load limit of 3500 lb. Complete parts (a) through (d) below. a. Given that the gondola is rated for a load limit of 3500 lb, what is the maximum mean weight of the passengers if the gondola is filled to the stated capacity of 25 passengers? The maximum mean weight is 140 lb. (Type an integer or a decimal. Do not round.) b. If the gondola is filled with 25 randomly selected skiers, what is the probability that their mean weight exceeds the value from part (a)? The probability is 1.0000. (Round to four decimal places as needed.) c. If the weight assumptions were revised so that the new capacity became 20 passengers and the gondola is filled with 20 randomly selected skiers, what is the probability that their mean weight exceeds 175 lb, which is the maximum mean weight that does not cause the total load to exceed 3500 Ib? The probability is: (Round to four decimal places as needed.)
A ski gondola carries skiers to the top of a mountain. Assume that weights of skiers are normally distributed with a mean of 190 lb and a standard deviation of 44 lb. The gondola has a stated capacity of 25 passengers, and the gondola is rated for a load limit of 3500 lb. Complete parts (a) through (d) below. a. Given that the gondola is rated for a load limit of 3500 lb, what is the maximum mean weight of the passengers if the gondola is filled to the stated capacity of 25 passengers? The maximum mean weight is 140 lb. (Type an integer or a decimal. Do not round.) b. If the gondola is filled with 25 randomly selected skiers, what is the probability that their mean weight exceeds the value from part (a)? The probability is 1.0000. (Round to four decimal places as needed.) c. If the weight assumptions were revised so that the new capacity became 20 passengers and the gondola is filled with 20 randomly selected skiers, what is the probability that their mean weight exceeds 175 lb, which is the maximum mean weight that does not cause the total load to exceed 3500 Ib? The probability is: (Round to four decimal places as needed.)
A First Course in Probability (10th Edition)
10th Edition
ISBN:9780134753119
Author:Sheldon Ross
Publisher:Sheldon Ross
Chapter1: Combinatorial Analysis
Section: Chapter Questions
Problem 1.1P: a. How many different 7-place license plates are possible if the first 2 places are for letters and...
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, probability and related others by exploring similar questions and additional content below.Recommended textbooks for you
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON
A First Course in Probability (10th Edition)
Probability
ISBN:
9780134753119
Author:
Sheldon Ross
Publisher:
PEARSON