A six-pulse SCR bridge for a three-phase source draws power from a 500 V, 50 Hz line (the volt- age is specified as the RMS line-to-line potential, as is standard in three-phase practice). The rec- tifier supplies a large dc motor. The motor has series inductance La = 0.4 mH and series resis- tance R = 5 mn. The internal voltage V₂ = kw, where k is a field flux constant equal to 3 V s/rad, and w is the shaft speed in rad/s. The shaft torque is T₂ = kia, where ia is the motor current. It is desired to operate this motor with a 250 A current limit to provide a controlled acceleration at start-up. Determine the SCR phase delay angle as a function of motor speed to enforce a 250 A current.

Introductory Circuit Analysis (13th Edition)
13th Edition
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:Robert L. Boylestad
Chapter1: Introduction
Section: Chapter Questions
Problem 1P: Visit your local library (at school or home) and describe the extent to which it provides literature...
icon
Related questions
Question
21. A six-pulse SCR bridge for a three-phase source draws power from a 500 V, 50 Hz line (the volt-
age is specified as the RMS line-to-line potential, as is standard in three-phase practice). The rec-
tifier supplies a large dc motor. The motor has series inductance La = 0.4 mH and series resis-
tance R₁ = 5 ms. The internal voltage Vg = kw, where k is a field flux constant equal to 3 V. s/rad,
and w is the shaft speed in rad/s. The shaft torque is Tekia, where ia is the motor current. It is
desired to operate this motor with a 250 A current limit to provide a controlled acceleration at
start-up. Determine the SCR phase delay angle as a function of motor speed to enforce a 250 A
current.
Transcribed Image Text:21. A six-pulse SCR bridge for a three-phase source draws power from a 500 V, 50 Hz line (the volt- age is specified as the RMS line-to-line potential, as is standard in three-phase practice). The rec- tifier supplies a large dc motor. The motor has series inductance La = 0.4 mH and series resis- tance R₁ = 5 ms. The internal voltage Vg = kw, where k is a field flux constant equal to 3 V. s/rad, and w is the shaft speed in rad/s. The shaft torque is Tekia, where ia is the motor current. It is desired to operate this motor with a 250 A current limit to provide a controlled acceleration at start-up. Determine the SCR phase delay angle as a function of motor speed to enforce a 250 A current.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Sinusoids and Phasors of Alternating Circuit
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introductory Circuit Analysis (13th Edition)
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:
9780133923605
Author:
Robert L. Boylestad
Publisher:
PEARSON
Delmar's Standard Textbook Of Electricity
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:
9781337900348
Author:
Stephen L. Herman
Publisher:
Cengage Learning
Programmable Logic Controllers
Programmable Logic Controllers
Electrical Engineering
ISBN:
9780073373843
Author:
Frank D. Petruzella
Publisher:
McGraw-Hill Education
Fundamentals of Electric Circuits
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:
9780078028229
Author:
Charles K Alexander, Matthew Sadiku
Publisher:
McGraw-Hill Education
Electric Circuits. (11th Edition)
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:
9780134746968
Author:
James W. Nilsson, Susan Riedel
Publisher:
PEARSON
Engineering Electromagnetics
Engineering Electromagnetics
Electrical Engineering
ISBN:
9780078028151
Author:
Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:
Mcgraw-hill Education,