A single cylinder vertical petrol engine of total mass 320 kg is mounted upon a steel chassis and causes a vertical static deflection of 2 mm. The reciprocating parts of the engine have a mass of 24 kg and move through a vertical stroke of 150 mm with simple harmonic motion. A dashpot attached to the system offers a resistance of 490 N at a velocity of 0.3 m/sec. Determine: (i) The speed of the driving shaft at resonance; (ii) The amplitude of steady state vibration when the driving shaft of the engine rotates at 480 rpm.

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
Question
(a)
A single cylinder vertical petrol engine of total mass 320 kg is mounted upon a steel
chassis and causes a vertical static deflection of 2 mm. The reciprocating parts of the
engine have a mass of 24 kg and move through a vertical stroke of 150 mm with
simple harmonic motion. A dashpot attached to the system offers a resistance of 490
N at a velocity of 0.3 m/sec. Determine:
(i) The speed of the driving shaft at resonance;
(ii) The amplitude of steady state vibration when the driving shaft of the engine
rotates at 480 rpm.
(b) A vibrating system is defined by the following parameters:
m=3 kg, k = 100 N/m, C=3 N-sec/m
Determine
(i) the damping factor,
(ii) the natural frequency of damped vibration,
(iii) logarithmic decrement,
(iv) the ratio of two consecutive amplitudes and
(v) the number of cycles after which the original amplitude is reduced to 20
percent.
Transcribed Image Text:(a) A single cylinder vertical petrol engine of total mass 320 kg is mounted upon a steel chassis and causes a vertical static deflection of 2 mm. The reciprocating parts of the engine have a mass of 24 kg and move through a vertical stroke of 150 mm with simple harmonic motion. A dashpot attached to the system offers a resistance of 490 N at a velocity of 0.3 m/sec. Determine: (i) The speed of the driving shaft at resonance; (ii) The amplitude of steady state vibration when the driving shaft of the engine rotates at 480 rpm. (b) A vibrating system is defined by the following parameters: m=3 kg, k = 100 N/m, C=3 N-sec/m Determine (i) the damping factor, (ii) the natural frequency of damped vibration, (iii) logarithmic decrement, (iv) the ratio of two consecutive amplitudes and (v) the number of cycles after which the original amplitude is reduced to 20 percent.
Expert Solution
steps

Step by step

Solved in 6 steps

Blurred answer
Knowledge Booster
Free Damped Vibrations
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY