(a) Show that about 1.0 × 1010 J would be released by the fusion of the deuterons in 1.0 gal of water. Note that 1 of every 6 500 hydrogen atoms is a deuteron. (b) The average energy consumption rate of a person living in the United States is about 1.0 × 104 J/s (an average power of 10 kW). At this rate, how long would the energy needs of one person be supplied by the fusion of the deuterons in 1.0 gal of water? Assume the energy released per deuteron is 1.64 MeV
Nuclear Fusion
Nuclear fusion is a type of nuclear reaction. In nuclear fusion, two or more than two lighter atomic nuclei combine to form a heavier nucleus. During this process, an enormous amount of energy is released. This energy is called nuclear energy. Nuclear fusion is the energy source of the sun and stars.
Fusion Bomb
A fusion bomb is also known as a thermonuclear bomb or hydrogen bomb which releases a large amount of explosive energy during a nuclear chain reaction when the lighter nuclei in it, combine to form heavier nuclei, and a large amount of radiation is released. It is an uncontrolled, self-sustaining nuclear chain reaction where isotopes of hydrogen combine under very high temperature to form helium. They work on the principle of operation of atomic fusion. The isotopes of Hydrogen are deuterium and tritium, where they combine their masses and have greater mass than the product nuclei, get heated at high temperatures, and releases energy.
(a) Show that about 1.0 × 1010 J would be released by the fusion of the deuterons in 1.0 gal of water. Note that 1 of every 6 500 hydrogen atoms is a deuteron. (b) The average energy consumption rate of a person living in the United States is about 1.0 × 104 J/s (an average power of 10 kW). At this rate, how long would the energy needs of one person be supplied by the fusion of the deuterons in 1.0 gal of water? Assume the energy released per deuteron is 1.64 MeV
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 5 images