A series of depth and discharge measurements are made on a sharp-crested rectangular weir in order to establish the coefficient of discharge for the weir. Experimental values are used to plot log(H) against log(Q) and generate a line of best fit. The resulting line passes through the points (-1, -1.154) and (-161/1000, 0.088). The weir is 1.2 m wide. Give your answers to 3 d.p. (a) Calculate the gradient of the line of best fit (b) Calculate the value of log(Q) for which the line of best fit crosses the log(Q) axis (i.e. the intercept) (c) Calculate cd, giving your answer to 3 d.p.

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
A series of depth and discharge measurements are made on a sharp-crested rectangular weir in order to establish the coefficient of discharge for the
weir. Experimental values are used to plot log(H) against log(Q) and generate a line of best fit. The resulting line passes through the points (-1, -1.154)
and (-161/1000, 0.088). The weir is 1.2 m wide. Give your answers to 3 d.p.
(a) Calculate the gradient of the line of best fit
(b) Calculate the value of log(Q) for which the line of best fit crosses the log(Q) axis (i.e. the intercept)
(c) Calculate cd, giving your answer to 3 d.p.
Transcribed Image Text:A series of depth and discharge measurements are made on a sharp-crested rectangular weir in order to establish the coefficient of discharge for the weir. Experimental values are used to plot log(H) against log(Q) and generate a line of best fit. The resulting line passes through the points (-1, -1.154) and (-161/1000, 0.088). The weir is 1.2 m wide. Give your answers to 3 d.p. (a) Calculate the gradient of the line of best fit (b) Calculate the value of log(Q) for which the line of best fit crosses the log(Q) axis (i.e. the intercept) (c) Calculate cd, giving your answer to 3 d.p.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Knowledge Booster
Pressure, Volume and temperature
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The