A semi-infinite string is located initially (at time t = 0) along the positive X-axis, 0 < x <∞. The string is looped around a vertical support at the 'far end', corresponding to x → ∞o, which exerts no vertical force on the tape: limu(x, t) = 0. At the near end, corresponding to x = 0, the tape is tethered to a support, which fixes its position. The initial velocity is zero throughout the tape, i.e., at ди t = 0, = 0. at ²u The displacement u(x, t) of the string obeys the wave equation - A t, where c is a at² given positive constant with units m s¹, and A is a given positive constant with units m s ³. Solve the PDE analytically for the displacement of the tape at any location at any time t > 0. = c². ² əx²
A semi-infinite string is located initially (at time t = 0) along the positive X-axis, 0 < x <∞. The string is looped around a vertical support at the 'far end', corresponding to x → ∞o, which exerts no vertical force on the tape: limu(x, t) = 0. At the near end, corresponding to x = 0, the tape is tethered to a support, which fixes its position. The initial velocity is zero throughout the tape, i.e., at ди t = 0, = 0. at ²u The displacement u(x, t) of the string obeys the wave equation - A t, where c is a at² given positive constant with units m s¹, and A is a given positive constant with units m s ³. Solve the PDE analytically for the displacement of the tape at any location at any time t > 0. = c². ² əx²
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![A semi-infinite string is located initially (at time t = 0) along the positive X-axis, 0 < x < ∞ . The
string is looped around a vertical support at the 'far end', corresponding to x→ ∞, which exerts no
0, the tape is
Ә
vertical force on the tape: limu(x, t) = 0. At the near end, corresponding to x =
х→00 дх
tethered to a support, which fixes its position. The initial velocity is zero throughout the tape, i.e., at
ди
t = 0, = 0.
at
อใน
əx²
The displacement u(x, t) of the string obeys the wave equation
A t, where c is a
given positive constant with units m s´¹, and A is a given positive constant with units m s ³. Solve the
PDE analytically for the displacement of the tape at any location at any time t > 0.
²u
at²
C²](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa7ef27d7-b0b2-4dc6-b134-3305bdee12fc%2Fb764936a-5d7a-4c6e-a92f-238754241ecb%2F56xrbda_processed.png&w=3840&q=75)
Transcribed Image Text:A semi-infinite string is located initially (at time t = 0) along the positive X-axis, 0 < x < ∞ . The
string is looped around a vertical support at the 'far end', corresponding to x→ ∞, which exerts no
0, the tape is
Ә
vertical force on the tape: limu(x, t) = 0. At the near end, corresponding to x =
х→00 дх
tethered to a support, which fixes its position. The initial velocity is zero throughout the tape, i.e., at
ди
t = 0, = 0.
at
อใน
əx²
The displacement u(x, t) of the string obeys the wave equation
A t, where c is a
given positive constant with units m s´¹, and A is a given positive constant with units m s ³. Solve the
PDE analytically for the displacement of the tape at any location at any time t > 0.
²u
at²
C²
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)