A rocket accelerates at 25m/s2 from rest on a frictionless inclined surface. The inclined ramp has a height of 70m and makes a 32 degrees angle above the ground. The rocket stops accelerating at the instant it leaves the incline. If air resistance is negligible, what is the horizontal distance 'R' from the end of the ramp to the point of impact (where it hits the ground)? a) Draw a diagram of this situation and be sure to include the distance 'R' b) Calculate the distance 'R' from the end of the ramp to the point of impact. 1.Draw the clear diagram 2. Give the indicating distance 'R' 3. Show your work 4. Find vertical and horizontal components
Displacement, Velocity and Acceleration
In classical mechanics, kinematics deals with the motion of a particle. It deals only with the position, velocity, acceleration, and displacement of a particle. It has no concern about the source of motion.
Linear Displacement
The term "displacement" refers to when something shifts away from its original "location," and "linear" refers to a straight line. As a result, “Linear Displacement” can be described as the movement of an object in a straight line along a single axis, for example, from side to side or up and down. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Non-contact sensors such as LVDTs and other linear location sensors can calculate linear displacement. Linear displacement is usually measured in millimeters or inches and may be positive or negative.
A rocket accelerates at 25m/s2 from rest on a frictionless inclined surface. The inclined ramp has a height of 70m and makes a 32 degrees angle above the ground. The rocket stops accelerating at the instant it leaves the incline. If air resistance is negligible, what is the horizontal distance 'R' from the end of the ramp to the point of impact (where it hits the ground)?
a) Draw a diagram of this situation and be sure to include the distance 'R'
b) Calculate the distance 'R' from the end of the ramp to the point of impact.
1.Draw the clear diagram
2. Give the indicating distance 'R'
3. Show your work
4. Find vertical and horizontal components of velocity when rocket leaves ramp
5. Find distance 'R'
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images