A rigid, well-insulated tank contains air. A partition in the tank separates 12 ft^3 of air at 14.7 lbf/in2, 40◦F (left side of the tank) from 10 ft^3 of air at 50 lbf/in2, 200◦F(right side of the tank), as illustrated in the figure. The partition is removed and air from the two sides mix until a final equilibrium state is attained. The air can be modeled as an ideal gas, and kinetic and potential energy effects can be neglected. (Note: values for the left side of the tank are denoted with a subscript L, and values for the right side of the tank are denoted with a subscript R). a) Determine the final temperature (in F) b) Determine the final pressure (in lbf/in^2) c) Calculate the amount of entropy produced, in Btu/R d) Is this mixing process reversible or irreversible?
A rigid, well-insulated tank contains air. A partition in the tank separates 12 ft^3 of air at 14.7 lbf/in2, 40◦F (left side of the tank) from 10 ft^3 of air at 50 lbf/in2, 200◦F(right side of the tank), as illustrated in the figure. The partition is removed and air from the two sides mix until a final equilibrium state is attained. The air can be modeled as an ideal gas, and kinetic and potential energy effects can be neglected. (Note: values for the left side of the tank are denoted with a subscript L, and values for the right side of the tank are denoted with a subscript R).
a) Determine the final temperature (in F)
b) Determine the final pressure (in lbf/in^2)
c) Calculate the amount of entropy produced, in Btu/R
d) Is this mixing process reversible or irreversible?
![air
air
air
P2, T2
V½ = 12 ft
PL = 14.7 lbf/in.?
TL= 40°F = 500°R
VR = 10 ft
PR = 50 lbf/in.?
TR- 200°F = 660°R
%3D
%3D](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fef23ae31-6e15-4a6c-a593-6976ceaee972%2Fee2b90d2-c8cd-4382-908b-9a0352d76872%2Fvrsc10a_processed.png&w=3840&q=75)
![](/static/compass_v2/shared-icons/check-mark.png)
Trending now
This is a popular solution!
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)