A rigid beam of length 1.8 m is in equilibrium, with one end attached to a wall by a hinge, and the other end held in place by a thin, massless wire as shown in the figure on Zoom. The wire will break if tension exceeds 1300 N. What is the maximum mass of the beam that can still be supported by the wire?
Rotational Equilibrium And Rotational Dynamics
In physics, the state of balance between the forces and the dynamics of motion is called the equilibrium state. The balance between various forces acting on a system in a rotational motion is called rotational equilibrium or rotational dynamics.
Equilibrium of Forces
The tension created on one body during push or pull is known as force.
A rigid beam of length 1.8 m is in equilibrium, with one end attached to a wall by a hinge, and the other end held in place by a thin, massless wire as shown in the figure on Zoom. The wire will break if tension exceeds 1300 N. What is the maximum mass of the beam that can still be supported by the wire?
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images