A relation R on a set A is defined to be irreflexive if, and only if, for every  x ∈ A,  x R x; asymmetric if, and only if, for every  x, y ∈ A  if  x R y  then y R x; intransitive if, and only if, for every  x, y,   z ∈ A,  if  x R y  and  y R z  then x R z. Let  A = {0, 1, 2, 3},  and define a relation  R4  on A as follows. R4 = (1, 2), (2, 1), (1, 3), (3, 1) Is  R4  irreflexive, asymmetric, intransitive, or none of these? R4 is irreflexive.R4 is asymmetric.R4 is intransitive.R4 is neither irreflexive, asymmetric, nor intransitive.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
A relation R on a set A is defined to be
  • irreflexive if, and only if, for every 
    x ∈ A,
     x R x;
  • asymmetric if, and only if, for every 
    x, y ∈ A
     if 
    x R y
     then y R x;
  • intransitive if, and only if, for every 
    x, y,
     
    z ∈ A,
     if 
    x R y
     and 
    y R z
     then x R z.
Let 
A = {0, 1, 2, 3},
 and define a relation 
R4
 on A as follows.
R4 = (1, 2), (2, 1), (1, 3), (3, 1)
Is 
R4
 irreflexive, asymmetric, intransitive, or none of these?
R4 is irreflexive.R4 is asymmetric.R4 is intransitive.R4 is neither irreflexive, asymmetric, nor intransitive.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,