A refrigeration unit maintains the interior temperature of a walk-in meat locker at a temperature of – 5°C. The rate of heat transfer to the locker from the outside air is 8000 kJ/hr. The air outside the locker is at 22°C. The coefficient of performance [COP] for the actual refrigeration unit is 2.5 to maintain the locker temperature. Assume [3]: Max [TH,Tc] : BMax [TH,Tc] : YMax [TH,Tc] :
A refrigeration unit maintains the interior temperature of a walk-in meat locker at a temperature of – 5°C. The rate of heat transfer to the locker from the outside air is 8000 kJ/hr. The air outside the locker is at 22°C. The coefficient of performance [COP] for the actual refrigeration unit is 2.5 to maintain the locker temperature. Assume [3]: Max [TH,Tc] : BMax [TH,Tc] : YMax [TH,Tc] :
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
![**Refrigeration Cycle Analysis**
A refrigeration unit maintains the interior temperature of a walk-in meat locker at a temperature of –5°C. The rate of heat transfer to the locker from the outside air is 8000 kJ/hr. The air outside the locker is at 22°C. The coefficient of performance (COP) for the actual refrigeration unit is 2.5 to maintain the locker temperature.
**Assumptions:**
\[
\begin{align*}
\eta_{\text{Max}}[T_H, T_C] &= \\
\beta_{\text{Max}}[T_H, T_C] &= \\
\gamma_{\text{Max}}[T_H, T_C] &= \\
\end{align*}
\]
**Multiple Choice Questions:**
1. **The maximum coefficient of performance (COP) for the refrigeration cycle is equal to:**
- a. 2.50
- b. 9.93
- c. 10.93
- d. none of the above
2. **The heat transfer to the locker from the outside air to the locker is equal to:**
- a. \(Q_{\text{Net}}\)
- b. \(Q_c\)
- c. \(Q_H\)
- d. none of the above
3. **The required power input \(W_{\text{Actual}}\) for the cycle in kJ/hr is:**
- a. 3,200
- b. 8,000
- c. 20,000
- d. none of the above
4. **The minimum power input \(W_{\text{Min}}\) for the cycle in kJ/hr is:**
- a. 730
- b. 805
- c. 3200
- d. none of the above
5. **The required power input \(W_{\text{Actual}}\) for a cycle with a COP of 5 in kJ/hr is:**
- a. 1,600
- b. 4,000
- c. 10,000
- d. none of the above
**Explanations:**
- This material discusses the thermal dynamics involved in refrigeration cycles, particularly emphasizing the mechanics of heat transfer and energy efficiency.
- Assumptions for maximum efficiencies are presented](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe801909c-59c9-4b6d-8f92-02e1e3a7b70b%2Fafe85f1d-89ea-4da0-9341-cdae1354fa5a%2F0pyfe3q_processed.png&w=3840&q=75)
Transcribed Image Text:**Refrigeration Cycle Analysis**
A refrigeration unit maintains the interior temperature of a walk-in meat locker at a temperature of –5°C. The rate of heat transfer to the locker from the outside air is 8000 kJ/hr. The air outside the locker is at 22°C. The coefficient of performance (COP) for the actual refrigeration unit is 2.5 to maintain the locker temperature.
**Assumptions:**
\[
\begin{align*}
\eta_{\text{Max}}[T_H, T_C] &= \\
\beta_{\text{Max}}[T_H, T_C] &= \\
\gamma_{\text{Max}}[T_H, T_C] &= \\
\end{align*}
\]
**Multiple Choice Questions:**
1. **The maximum coefficient of performance (COP) for the refrigeration cycle is equal to:**
- a. 2.50
- b. 9.93
- c. 10.93
- d. none of the above
2. **The heat transfer to the locker from the outside air to the locker is equal to:**
- a. \(Q_{\text{Net}}\)
- b. \(Q_c\)
- c. \(Q_H\)
- d. none of the above
3. **The required power input \(W_{\text{Actual}}\) for the cycle in kJ/hr is:**
- a. 3,200
- b. 8,000
- c. 20,000
- d. none of the above
4. **The minimum power input \(W_{\text{Min}}\) for the cycle in kJ/hr is:**
- a. 730
- b. 805
- c. 3200
- d. none of the above
5. **The required power input \(W_{\text{Actual}}\) for a cycle with a COP of 5 in kJ/hr is:**
- a. 1,600
- b. 4,000
- c. 10,000
- d. none of the above
**Explanations:**
- This material discusses the thermal dynamics involved in refrigeration cycles, particularly emphasizing the mechanics of heat transfer and energy efficiency.
- Assumptions for maximum efficiencies are presented
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY