A rectangle is inscribed with its base on the x-axis and its upper corners on the parabola y = 8 - x. What are the dimensions of such a rectangle with the greatest possible area? Width = Height =
A rectangle is inscribed with its base on the x-axis and its upper corners on the parabola y = 8 - x. What are the dimensions of such a rectangle with the greatest possible area? Width = Height =
College Algebra (MindTap Course List)
12th Edition
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:R. David Gustafson, Jeff Hughes
Chapter4: Polynomial And Rational Functions
Section4.1: Quadratic Functions
Problem 96E
Related questions
Question
Pls hlp.
![**Problem Statement:**
A rectangle is inscribed with its base on the x-axis and its upper corners on the parabola \( y = 8 - x^2 \). What are the dimensions of such a rectangle with the greatest possible area?
**Inputs Required:**
- Width = [Input Box]
- Height = [Input Box]
**Explanation:**
In this problem, you are asked to find the dimensions of a rectangle that is inscribed under the parabola \( y = 8 - x^2 \). The rectangle's base lies on the x-axis, and its upper corners touch the parabola. The goal is to determine the width and height of the rectangle that result in the maximum area. The problem involves using calculus or geometric reasoning to find the optimal dimensions.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F7bdf3309-fa76-4a47-91fb-d52ef92fe6e2%2F7e825b72-903e-4f2d-9fdc-6d68ac5161da%2F6nuv9n_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem Statement:**
A rectangle is inscribed with its base on the x-axis and its upper corners on the parabola \( y = 8 - x^2 \). What are the dimensions of such a rectangle with the greatest possible area?
**Inputs Required:**
- Width = [Input Box]
- Height = [Input Box]
**Explanation:**
In this problem, you are asked to find the dimensions of a rectangle that is inscribed under the parabola \( y = 8 - x^2 \). The rectangle's base lies on the x-axis, and its upper corners touch the parabola. The goal is to determine the width and height of the rectangle that result in the maximum area. The problem involves using calculus or geometric reasoning to find the optimal dimensions.

Transcribed Image Text:**Problem Statement:**
A rancher wants to fence in an area of 3,000,000 square feet in a rectangular field and then divide it in half with a fence down the middle parallel to one side. What is the shortest length of fence that the rancher can use?
**Explanation:**
The given problem involves a rancher who needs to enclose a rectangular area of 3,000,000 square feet with additional fencing required to divide this area into two equal halves. The objective is to determine the minimum total length of fencing required, considering one of these dividing lines runs parallel to one of the sides of the rectangle.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images

Recommended textbooks for you

College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage


College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage


Holt Mcdougal Larson Pre-algebra: Student Edition…
Algebra
ISBN:
9780547587776
Author:
HOLT MCDOUGAL
Publisher:
HOLT MCDOUGAL

Big Ideas Math A Bridge To Success Algebra 1: Stu…
Algebra
ISBN:
9781680331141
Author:
HOUGHTON MIFFLIN HARCOURT
Publisher:
Houghton Mifflin Harcourt
