A reaction turbine has guide vanes at an angle of 30° and the runner blades make an angle of 80° relative to the tangent at inlet. The blades width at the inlet is 1/4 of the outer diameter. The water does not have any tangential velocity at the outlet. The head is 25 m and the rotational speed of the runner is 16.67 rotations per second. The turbine efficiency is 88 %. Determine the turbine runner diameter at the inlet and the power developed.
A reaction turbine has guide vanes at an angle of 30° and the runner blades make an angle of 80° relative to the tangent at inlet. The blades width at the inlet is 1/4 of the outer diameter. The water does not have any tangential velocity at the outlet. The head is 25 m and the rotational speed of the runner is 16.67 rotations per second. The turbine efficiency is 88 %. Determine the turbine runner diameter at the inlet and the power developed.
Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
Related questions
Question

Transcribed Image Text:A reaction turbine has guide vanes at an angle of 30° and the runner blades make an
angle of 80° relative to the tangent at inlet. The blades width at the inlet is 14 of the
outer diameter. The water does not have any tangential velocity at the outlet. The
head is 25 m and the rotational speed of the runner is 16.67 rotations per second. The
turbine efficiency is 88 %. Determine the turbine runner diameter at the inlet and the
power developed.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Recommended textbooks for you

Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY

Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall

Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education

Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY

Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall


Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning

Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The