(a) Re-write this formula using step size h/2 instead of h. (b) Multiply your answer from (a) by 4, subtract (*) from the result, and then divide everything by 3. We now should have an approximation to ƒ'(x) based on f(xo+h, f(x−h), f(xo+h/2) and f(xo-h/2). What is the error in this new approximation f'(xo)?

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Taylor's theorem

(a) Re-write this formula using step size \( h/2 \) instead of \( h \).

(b) Multiply your answer from (a) by 4, subtract \( (\ast) \) from the result, and then divide everything by 3. We now should have an approximation to \( f'(x_0) \) based on \( f(x_0 + h), f(x_0 - h), f(x_0 + h/2) \) and \( f(x_0 - h/2) \). What is the error in this new approximation \( f'(x_0) \)?
Transcribed Image Text:(a) Re-write this formula using step size \( h/2 \) instead of \( h \). (b) Multiply your answer from (a) by 4, subtract \( (\ast) \) from the result, and then divide everything by 3. We now should have an approximation to \( f'(x_0) \) based on \( f(x_0 + h), f(x_0 - h), f(x_0 + h/2) \) and \( f(x_0 - h/2) \). What is the error in this new approximation \( f'(x_0) \)?
**[7] [Richardson extrapolation for a 2nd order accurate approximation]**

Using Taylor’s theorem, it can be shown that if \( f \in C^5([a, b]) \), then the centered difference approximation formula for the first derivative is given by 

\[
f'(x_0) = \underbrace{\frac{f(x_0 + h) - f(x_0 - h)}{2h}}_{\text{approximation}} - \left(\underbrace{\frac{h^2}{6} f^{(3)}(x_0) + \frac{h^4}{120} f^{(5)}(\xi)}_{\text{error}}\right) \quad (*)
\]

- **True value:** \( f'(x_0) \)
- **Approximation:** \(\frac{f(x_0 + h) - f(x_0 - h)}{2h}\)
- **Error:** \(\left(\frac{h^2}{6} f^{(3)}(x_0) + \frac{h^4}{120} f^{(5)}(\xi)\right)\)

This formula provides a way to approximate the first derivative of a function using values of the function at points \( x_0 + h \) and \( x_0 - h \), corrected by a term that quantifies the error based on the higher derivatives of \( f \).
Transcribed Image Text:**[7] [Richardson extrapolation for a 2nd order accurate approximation]** Using Taylor’s theorem, it can be shown that if \( f \in C^5([a, b]) \), then the centered difference approximation formula for the first derivative is given by \[ f'(x_0) = \underbrace{\frac{f(x_0 + h) - f(x_0 - h)}{2h}}_{\text{approximation}} - \left(\underbrace{\frac{h^2}{6} f^{(3)}(x_0) + \frac{h^4}{120} f^{(5)}(\xi)}_{\text{error}}\right) \quad (*) \] - **True value:** \( f'(x_0) \) - **Approximation:** \(\frac{f(x_0 + h) - f(x_0 - h)}{2h}\) - **Error:** \(\left(\frac{h^2}{6} f^{(3)}(x_0) + \frac{h^4}{120} f^{(5)}(\xi)\right)\) This formula provides a way to approximate the first derivative of a function using values of the function at points \( x_0 + h \) and \( x_0 - h \), corrected by a term that quantifies the error based on the higher derivatives of \( f \).
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,