A radiologist investigates whether a new (less costly) method for identifying esophageal cancer is as effective as the gold standard. He obtains the following test results: false positive = 0, true positive = 46, false negative = 1, true negative = 17. (a) What is the sensitivity of the test? (Round your answer to four decimal places.) 0.9787 (b) Consider the following Excel spreadsheet. BINOMDIST(45, 47, p, TRUE) Р 0.8000 1.000 0.8100 0.999 0.8200 0.999 0.8300 0.998 0.8400 0.997 0.8500 0.996 0.8600 0.993 0.8700 0.988 0.8800 0.982 0.8900 0.972 0.9000 0.956 0.9100 0.933 0.9200 0.899 0.9300 0.850 0.9400 0.782 0.9500 0.688 0.9600 0.566 0.9700 0.414 0.9800 0.242 0.9900 0.080 0.9950 0.023 0.9990 0.001 0.9995 0.000 True positves True positive + False negative BINOMDIST(46, 47, p, TRUE) 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.999 0.998 0.996 0.993 0.988 0.980 0.967 0.945 0.910 0.853 0.761 0.613 0.376 0.210 0.046 0.023 46 47 46 = 46+1 = 0.9787234043 = 0.9787 Provide a 95% CI for the sensitivity. (Enter your answer using interval notation. Round your numerical values to two decimal places. Hint: The above Excel spreadsheet might be useful.) Please explain how to do the enclosed ( ) manually

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
**Radiology, Cancer**

A radiologist investigates whether a new (less costly) method for identifying esophageal cancer is as effective as the gold standard.

He obtains the following test results:
- False positive = 0
- True positive = 46
- False negative = 1
- True negative = 17

**(a) Sensitivity of the Test**

The formula for sensitivity is:
\[
\text{Sensitivity} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}}
\]

Calculating the sensitivity:
\[
\text{Sensitivity} = \frac{46}{46 + 1} = 0.9787
\]

**(b) Excel Spreadsheet Analysis**

The following Excel spreadsheet provides values of the binomial distribution function for different probabilities (p):

| p      | BINOMDIST(45, 47, p, TRUE) | BINOMDIST(46, 47, p, TRUE) |
|--------|--------------------------|--------------------------|
| 0.8000 | 1.000                    | 1.000                    |
| 0.8100 | 0.999                    | 1.000                    |
| 0.8200 | 0.999                    | 1.000                    |
| 0.8300 | 0.998                    | 1.000                    |
| 0.8400 | 0.997                    | 1.000                    |
| 0.8500 | 0.996                    | 1.000                    |
| 0.8600 | 0.993                    | 0.999                    |
| 0.8700 | 0.988                    | 0.999                    |
| 0.8800 | 0.982                    | 0.998                    |
| 0.8900 | 0.972                    | 0.996                    |
| 0.9000 | 0.956                    | 0.993                    |
| 0.9100 | 0.933                    | 0.988                    |
| 0.9200 | 0.899                    | 0.980                    |
| 0.9300 | 0.850                    | 0.967                    |
| 0.9400 | 0.782                    | 0.945                    |
Transcribed Image Text:**Radiology, Cancer** A radiologist investigates whether a new (less costly) method for identifying esophageal cancer is as effective as the gold standard. He obtains the following test results: - False positive = 0 - True positive = 46 - False negative = 1 - True negative = 17 **(a) Sensitivity of the Test** The formula for sensitivity is: \[ \text{Sensitivity} = \frac{\text{True Positives}}{\text{True Positives} + \text{False Negatives}} \] Calculating the sensitivity: \[ \text{Sensitivity} = \frac{46}{46 + 1} = 0.9787 \] **(b) Excel Spreadsheet Analysis** The following Excel spreadsheet provides values of the binomial distribution function for different probabilities (p): | p | BINOMDIST(45, 47, p, TRUE) | BINOMDIST(46, 47, p, TRUE) | |--------|--------------------------|--------------------------| | 0.8000 | 1.000 | 1.000 | | 0.8100 | 0.999 | 1.000 | | 0.8200 | 0.999 | 1.000 | | 0.8300 | 0.998 | 1.000 | | 0.8400 | 0.997 | 1.000 | | 0.8500 | 0.996 | 1.000 | | 0.8600 | 0.993 | 0.999 | | 0.8700 | 0.988 | 0.999 | | 0.8800 | 0.982 | 0.998 | | 0.8900 | 0.972 | 0.996 | | 0.9000 | 0.956 | 0.993 | | 0.9100 | 0.933 | 0.988 | | 0.9200 | 0.899 | 0.980 | | 0.9300 | 0.850 | 0.967 | | 0.9400 | 0.782 | 0.945 |
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman