A QR code photographed in poor lighting, so that it can be difficult to distinguish black and white pixels. The gray color (X) in each pixel is therefore coded on a scale from 0 (white) to 100 (black). The true pixel value (without shadow) the code is Y = 0 for white, and Y = 1 for black. We treat X and Y as random variables. For the highlighted pixel in the figure is the gray color X = 20 and the true pixel value is white, i.e. Y = 0. We assume that QR codes are designed so that, on average, there are as many white as black pixels, which means that pY (0) = pY (1) = 1/2. In this situation, X is continuously distributed (0 ≤ X ≤ 100) and Y is discretely distributed, but we can still think about th

Algebra: Structure And Method, Book 1
(REV)00th Edition
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Chapter8: Introduction To Functions
Section8.8: Linear And Quadratic Functions
Problem 4ST
icon
Related questions
Question
100%

A QR code photographed in poor lighting, so that it can be difficult to distinguish black and white pixels. The gray color (X) in each pixel is therefore coded on a scale from 0 (white) to 100 (black). The true pixel value (without shadow) the code is Y = 0 for white, and Y = 1 for black. We treat X and Y as random variables. For the highlighted pixel in the figure is the gray color X = 20 and the true pixel value is white, i.e. Y = 0. We assume that QR codes are designed so that, on average, there are as many white as black pixels, which means that pY (0) = pY (1) = 1/2. In this situation, X is continuously distributed (0 ≤ X ≤ 100) and Y is discretely distributed, but we can still think about the simultaneous distribution of X and Y. We start by defining the conditional density of X, given the value of Y : 
fX|Y(x|0) = "Pixel is really white"

fX|Y(x|1) =" Pixel is really balck "

Use Bayes formula as given in the picture and find the probability for x = 20 like in the picture. 

| fx(2) =Zfx\x(\)pY(g) 0 ≤x≤100.
x 2
100
2
3
fx|y(x0)
fxy(x1) God
100 100.
|
100
3
(1 –
P(Y=0|X = x) =
fxy(x0)py (0)
fx(x)
Transcribed Image Text:| fx(2) =Zfx\x(\)pY(g) 0 ≤x≤100. x 2 100 2 3 fx|y(x0) fxy(x1) God 100 100. | 100 3 (1 – P(Y=0|X = x) = fxy(x0)py (0) fx(x)
25
ETS
ドロ
Transcribed Image Text:25 ETS ドロ
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Algebra: Structure And Method, Book 1
Algebra: Structure And Method, Book 1
Algebra
ISBN:
9780395977224
Author:
Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:
McDougal Littell
College Algebra
College Algebra
Algebra
ISBN:
9781305115545
Author:
James Stewart, Lothar Redlin, Saleem Watson
Publisher:
Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
College Algebra (MindTap Course List)
College Algebra (MindTap Course List)
Algebra
ISBN:
9781305652231
Author:
R. David Gustafson, Jeff Hughes
Publisher:
Cengage Learning