A pump is used in a building to lift water from a ground floor. The pump is pushing 60l/sec of water through a 0.1m diameter to above floor which is 5m high If the average velocity in the pipe is 6m/s. what will major energy loss if the dynamic viscosity of water is 8.9 x 10-4s. Due to vibration and noise issue in a pipe the velocity of pump is decided to set at 2.5 m/s. What will new major energy? Calculate the minor energy loss if length of the pipe is 15m. use f = 0.03, = 1, = 0.9 Analyse the relationship between frictional energy loss under different gravitational flow conditions
A pump is used in a building to lift water from a ground floor. The pump is pushing 60l/sec of water through a 0.1m diameter to above floor which is 5m high If the average velocity in the pipe is 6m/s. what will major energy loss if the dynamic viscosity of water is 8.9 x 10-4s. Due to vibration and noise issue in a pipe the velocity of pump is decided to set at 2.5 m/s. What will new major energy? Calculate the minor energy loss if length of the pipe is 15m. use f = 0.03, = 1, = 0.9 Analyse the relationship between frictional energy loss under different gravitational flow conditions
Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
Related questions
Question
A pump is used in a building to lift water from a ground floor. The pump is pushing 60l/sec of water through a 0.1m diameter to above floor which is 5m high
- If the average velocity in the pipe is 6m/s. what will major energy loss if the dynamic viscosity of water is 8.9 x 10-4s.
- Due to vibration and noise issue in a pipe the velocity of pump is decided to set at 2.5 m/s. What will new major energy?
- Calculate the minor energy loss if length of the pipe is 15m. use f = 0.03, = 1, = 0.9
- Analyse the relationship between frictional energy loss under different gravitational flow conditions
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Recommended textbooks for you
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY