A pulley is keyed to a shaft midway between two anti-fiction bearings. The bending moment at the pulley varies from – 170 N-m to 510 N-m and the torsional moment in the shaft varies from 55 N-m to 165 N-m. The fiequency of the variation of the loads is the same as the shaft speed. The shaft is made of cold drawn steel having an ultimate strength of 540 MPa and a yield strength of 400 MPa. Determine the required diameter for an indefinite life. The stress concentration factor for the keyway in bending and torsion may be taken as 1.6 and 1.3 respectively. The factor of safety is 1.5. Take size [Ans. 36.5 mm] factor = 0.85 and suface finish factor = 0.88. [Hint. Assume 0, = 0.5 0,;1, =0.5 0; t, = 0.55 0,]

Elements Of Electromagnetics
7th Edition
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Sadiku, Matthew N. O.
ChapterMA: Math Assessment
Section: Chapter Questions
Problem 1.1MA
icon
Related questions
icon
Concept explainers
Question
15. A pulley is keyed to a shaft midway between two anti-friction bearings. The bending moment at the
pulley varies fiom – 170N-m to 510 N-m and the torsional moment in the shaft varies from 55 N-m
to 165 N-m. The frequency of the variation of the loads is the same as the shaft speed. The shaft is
made of cold drawn steel having an ultimate strength of 540 MPa and a yield strength of 400 MPa.
Determine the required diameter for an indefinite life. The stress concentration factor for the keyway
in bending and torsion may be taken as 1.6 and 1.3 respectively. The factor of safety is 1.5. Take size
[Ans. 36.5 mm]
factor = 0.85 and suface finish factor = 0.88.
[Hint. Assume 0, = 0.5 0,;1, = 0.5 0,; t, = 0.55 0,]
Transcribed Image Text:15. A pulley is keyed to a shaft midway between two anti-friction bearings. The bending moment at the pulley varies fiom – 170N-m to 510 N-m and the torsional moment in the shaft varies from 55 N-m to 165 N-m. The frequency of the variation of the loads is the same as the shaft speed. The shaft is made of cold drawn steel having an ultimate strength of 540 MPa and a yield strength of 400 MPa. Determine the required diameter for an indefinite life. The stress concentration factor for the keyway in bending and torsion may be taken as 1.6 and 1.3 respectively. The factor of safety is 1.5. Take size [Ans. 36.5 mm] factor = 0.85 and suface finish factor = 0.88. [Hint. Assume 0, = 0.5 0,;1, = 0.5 0,; t, = 0.55 0,]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Knowledge Booster
Combined Loading
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
Recommended textbooks for you
Elements Of Electromagnetics
Elements Of Electromagnetics
Mechanical Engineering
ISBN:
9780190698614
Author:
Sadiku, Matthew N. O.
Publisher:
Oxford University Press
Mechanics of Materials (10th Edition)
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:
9780134319650
Author:
Russell C. Hibbeler
Publisher:
PEARSON
Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:
9781259822674
Author:
Yunus A. Cengel Dr., Michael A. Boles
Publisher:
McGraw-Hill Education
Control Systems Engineering
Control Systems Engineering
Mechanical Engineering
ISBN:
9781118170519
Author:
Norman S. Nise
Publisher:
WILEY
Mechanics of Materials (MindTap Course List)
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:
9781337093347
Author:
Barry J. Goodno, James M. Gere
Publisher:
Cengage Learning
Engineering Mechanics: Statics
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:
9781118807330
Author:
James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:
WILEY